Skip to main content

Low-Field Electron Mobility in Silicon Nanowires

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2016 (ECMI 2016)

Part of the book series: Mathematics in Industry ((TECMI,volume 26))

Included in the following conference series:

Abstract

Silicon nanowires (SiNWs) are quasi-one-dimensional structures in which electrons are spatially confined in two directions and they are free to move in the orthogonal direction. The subband decomposition and the electrostatic force field are obtained by solving the Schrödinger—Poisson coupled system. The electron transport along the free direction can be tackled using a hydrodynamic model, formulated by taking the moments of the multisubband Boltzmann equation. We shall introduce an extended hydrodynamic model where closure relations for the fluxes and production terms have been obtained by means of the Maximum Entropy Principle of Extended Thermodynamics, and in which the main scattering mechanisms such as those with phonons and surface roughness have been considered. By using this model, the low field mobility for a Gate-All-Around (GAA) SiNW transistor has been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castiglione, T., Muscato, O.: Non-parabolic band hydrodynamic model for silicon quantum wires. J. Comput. Theor. Transport 46(3), 186–201 (2017)

    Article  MathSciNet  Google Scholar 

  2. Di Stefano, V., Muscato, O.: Seebeck effect in silicon semiconductors. Acta Appl. Math. 122(1), 225–238 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Non-equilibrium Thermodynamics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  4. Lenzi, M., Palestri, P., Gnani, E., Reggiani, S., Gnudi, A., Esseni, D., Selmi, L., Baccarani, G.: Investigation of the transport properties of silicon nanowires using deterministic and Monte Carlo approaches to the solution of the Boltzmann transport equation. IEEE Trans. Electron Devices 55(8), 2086–2096 (2008)

    Article  Google Scholar 

  5. Majorana, A., Mascali, G., Romano V.: Charge transport and mobility in monolayer graphene. J. Math. Ind. 7, 4 (2017)

    Article  MathSciNet  Google Scholar 

  6. Mascali, G.: A hydrodynamic model for silicon semiconductors including crystal heating. Eur. J. Appl. Math. 26(4), 477–496 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mascali, G.: A new formula for Silicon thermal conductivity based on a hierarchy of hydrodynamical models. J. Stat. Phys. 163(5), 1268–1284 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mascali, G.: Thermal conductivity reduction by embedding nanoparticles. J. Comput. Electron. 16(1), 180–189 (2017). doi:10.1007/s10825-016-0934-y

    Article  Google Scholar 

  9. Muscato, O., Castiglione, T.: Electron transport in silicon nanowires having different cross-sections. Commun. Appl. Ind. Math. 7(2), 8–25 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Muscato, O., Castiglione, T.: A hydrodynamic model for silicon nanowires based on the maximum entropy principle. Entropy 18(10), 368 (2016)

    Article  Google Scholar 

  11. Muscato, O., Di Stefano,V.: Local equilibrium and off-equilibrium thermoelectric effects in silicon semiconductors. J. Appl. Phys. 110(9), 093706 (2011)

    Article  Google Scholar 

  12. Muscato, O., Di Stefano, V.: An Energy Transport Model describing heat generation and conduction in silicon semiconductors. J. Stat. Phys. 144, 171–197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Muscato, O., Di Stefano, V.: Hydrodynamic modeling of the electro-thermal transport in silicon semiconductors. J. Phys. A: Math. Theor. 44, 105501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Muscato, O., Di Stefano, V.: Heat generation and transport in nanoscale semiconductor devices via Monte Carlo and hydrodynamic simulations. COMPEL 30(2), 519–537 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Muscato, O., Di Stefano, V.: Hydrodynamic modeling of silicon quantum wires. J. Comput. Electron. 11(1), 45–55 (2012)

    Article  Google Scholar 

  16. Muscato, O., Di Stefano,V.: Electro-thermal behaviour of a sub-micron silicon diode. Semicond. Sci. Technol. 28, 025021 (2013)

    Article  Google Scholar 

  17. Muscato, O., Di Stefano, V.: Hydrodynamic simulation of a n + − n − n + silicon nanowire. Contin. Mech. Thermodyn. 26, 197–205 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Muscato, O., Di Stefano,V.: Electrothermal transport in silicon carbide semiconductors via a hydrodynamic model. SIAM J. Appl. Math. 75(4), 1941–1964 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Muscato, O., Wagner, W., Di Stefano, V.: Properties of the steady state distribution of electrons in semiconductors. Kinet. Relat. Models 4(3), 809–829 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Muscato, O., Di Stefano, V., Wagner, W.: A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation. Comput. Math. Appl. 65(3), 520–527 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ramayya, E.B., Knezevic, I.: Self-consistent Poisson-Schrödinger-Monte Carlo solver: electron mobility in silicon nanowires. J. Comput. Electron. 9, 206–210 (2010)

    Article  Google Scholar 

  22. Ryu, H.: A multi-subband Monte Carlo study on dominance of scattering mechanisms over carrier transport in sub-10-nm Si nanowire FETs. Nanoscale Res. Lett. 11(1), 36 (2016)

    Article  MathSciNet  Google Scholar 

  23. Trellakis, A., Galik, A.T., Pacelli, A., Ravaioli, U.: Iteration scheme for the solution of the two-dimensional Schrödinger-Poisson equations in quantum structures. J. Appl. Phys. 81(12), 7880–7884 (1997)

    Article  Google Scholar 

  24. Wang, J., Lundstrom, M.: Does source-to-drain tunneling limit the ultimate scaling of MOSFETs? In: IEEE IEDM Technical Digest, pp. 707–710 (2002)

    Google Scholar 

  25. Zheng, Y., Rivas, C., Lake, R., Alam, K., Boykin, T.B., Klimeck, G.: Electronic properties of silicon nanowires. IEEE Trans. Electron Devices 52(6), 1097–1103 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Università degli Studi di Catania, FIR 2014 “Charge Transport in Graphene and Low dimensional Structures: modeling and simulation” and the National Group of Mathematical Physics (GNFM-INdAM), “Progetto giovani 2015”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orazio Muscato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muscato, O., Castiglione, T., Coco, A. (2017). Low-Field Electron Mobility in Silicon Nanowires. In: Quintela, P., et al. Progress in Industrial Mathematics at ECMI 2016. ECMI 2016. Mathematics in Industry(), vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-63082-3_44

Download citation

Publish with us

Policies and ethics