Skip to main content

Feferman and the Truth

  • Chapter
  • First Online:
Feferman on Foundations

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 13))

Abstract

We outline some of Feferman’s main contributions to the theory of truth and the motivations behind them. In particular, we sketch the role truth can play in the foundations of mathematics and in the formulation of reflection principles, systems of ramified truth, several variants of the Kripke–Feferman theory, a deflationist theory in an extension of classical logic, and the system for determinate truth.

Dedicated to the memory of Solomon Feferman.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    For those who have doubts about the success of Tarski’s reduction, we add that worries had been raised early on and more recently by Field [22] and Putnam [48].

  2. 2.

    \(\mathsf {CT}\) contains the expanded induction schema, and this expansion is indeed crucial in deriving (2.1), since \(\mathsf {CT}\) without the expanded induction schema is conservative over \(\mathsf {PA}\) and thus does not yield (2.1). The question whether the expanded induction schema is an essential part of ‘the expressive resources needed for stating the soundness of \(\mathsf {PA}\)’ is a subtle issue and gave rise to lively debates in the context of deflationism; see a debate between Shapiro [56] and Field [23] for instance.

  3. 3.

    The notion of inner logic thus defined is ambiguous, because it is not clear enough how to extract logic from a given set of sentences, and one sometimes simply identify outer/inner theories and outer/inner logics. At any rate, the intended inner logic of \(\mathsf {KF}\) is strong Kleene logic, and Halbach and Horsten’s [34] result can be construed to have ‘shown’ that the inner logic of \(\mathsf {KF}\) is indeed strong Kleene logic.

  4. 4.

    He adds that the ‘facts’, on which T and F are grounded, may be representable as true (false) sentences of any system (arithmetic, set theory, etc.) we come to accept as basic.

  5. 5.

    As well as for total predicates, see Lemma 1.

  6. 6.

    For a precise definition, see Feferman [17]. One can replace \((\Pi ^0_1\text {-CA})_{< \alpha }\) in the statement of the theorem and below with ramified analysis up to any level \(<\alpha \) in a fixed formalization, provided \(\alpha \) has the form \(\omega ^\beta \), \(\beta \ge \omega \).

  7. 7.

    We assume a standard formalization of standard recursion theory via the Kleene bracket relation.

  8. 8.

    The statement can be used to interpret into \(\mathsf {KF}\) a basic system of Feferman’s Explicit Mathematics, see Feferman [13].

  9. 9.

    So \(\varphi (x,P)\) is a formula in the language of \(\mathsf {PA}\) expanded with the new predicate symbol P and positive in P.

  10. 10.

    Concerning this subsystem and the corresponding one with full induction, see Simpson [57]. There are in the literature several strategies for classifying its proof-theoretic strength, which apply either non-standard models (as in H. Friedman’s original proof) or some kind of proof theoretic machinery (in papers by several authors, among them Feferman himself).

  11. 11.

    Under the obvious translation of the language of \(\mathsf {KF}\), \(\mathsf {KF}\!\!\upharpoonright \) into the Tait framework.

  12. 12.

    In general, if \(\Gamma :=\lbrace \varphi _1,\ldots , \varphi _q\rbrace \), \(\Gamma [m, n]:=\lbrace \varphi _1[m,n],\ldots , \varphi _q[m,n]\rbrace \).

  13. 13.

    This means that, if \(0<m_2\le m_1\le k_1\le k_2\), \(\Gamma \) is a set of formulas such that \(\Gamma [m_1, k_1], \Delta \) is derivable in \(\mathsf {PA}\), then \(\Gamma [m_2, k_2], \Delta \) is also \(\mathsf {PA}\)-derivable, leaving height and cut complexity unchanged.

  14. 14.

    Note, however, that its logical complexity increases with m.

  15. 15.

    With the obvious proviso ensuring that no clash of variables occurs.

  16. 16.

    \(\Gamma _0\) is the first strongly critical ordinal, which is known to be the limit of predicative provability in the sense of Feferman and Schütte.

  17. 17.

    Of course, represented in \(\mathcal {L}_{T}\), so that P(t) is translated into \(t\in p\), p fresh variable; \(\varphi (x, \psi )\) is obtained by the substitution \(t\in y \mapsto \psi (t)\). The schema (3.11) claims that \(I_\varphi \) represents the least fixed point of the monotone operator defined by \(\varphi (x, P)\) in a given arithmetical model.

  18. 18.

    I.e. total in the sense of \(T\), \(F\), see Sect. 3.2.1.

  19. 19.

    This intuition yields a model in a suitable infinitary combinatory logic, as detailed in Aczel and Feferman [3].

  20. 20.

    Deflationism is a claim that truth is a ‘metaphysically thin and insubstantial’ notion and a merely logico-linguistic device for generalization and implicit endorsement. It is often argued that deflationist theory of truth should be conservative over a base theory, since otherwise the addition of a truth predicate would yield something that was not obtained without the help of it in the base theory. See also footnote 2 above. Shapiro [56] and McGee [47] discuss model-theoretic or semantic conservativeness.

  21. 21.

    Feferman [17] adopts the term ‘determined’ for a similar notion; see p. 20.

  22. 22.

    What Aczel [1] does in his construction of Frege structure essentially amounts to the construction of Kripkean fixed-point semantics with Aczel–Feferman logic.

References

  1. Aczel, P.: Frege structures and the notions of proposition, truth and set. In: Barwise, J., Keisler, H., Kunen, K. (eds.) The Kleene Symposium, pp. 31–59. North Holland, Amsterdam (1980)

    Google Scholar 

  2. Aczel, P.: The strength of Martin-Löf’s intuitionistic type theory with one universe. In: Mietissen, S., Väänänen, J. (eds.) Proceedings of the Symposiums in Mathematical Logic in Oulu 1974 and Helsinki 1975, pp. 1–32. Department of Philosophy, University of Helsinki, Report no. 2 (1977)

    Google Scholar 

  3. Aczel, P., Feferman, S.: Consistency of the unrestricted abstraction principle using an intensional equivalence operator. In: Seldin, J.P., Hindley, J.R. (eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 67–98. Academics Press, New York (1980)

    Google Scholar 

  4. Burgess, J.P.: Friedman and the axiomatization of Kripke’s theory of truth. In: Tennant, N. (ed.) Foundational Adventures: Essays in Honor of Harvey M. Friedman, pp. 125–148. College Publications, London (2014)

    Google Scholar 

  5. Cantini, A.: Notes on formal theories of truth. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 35, 97–130 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cantini, A.: A theory of formal truth arithmetically equivalent to ID\(_1\). J. Symb.Logic 55, 244–259 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cantini, A.: Logical Frameworks for Truth and Abstraction: An Axiomatic Study. Number 135 in Studies in Logic and the Foundations of Mathematics. Elsevier, Amsterdam, Lausanne, New York, Oxford, Shannon and Tokyo (1996)

    Google Scholar 

  8. Craig, W., Vaught, R.: Finite axiomatizability using additional predicates. J. Symb. Logic 23, 289–308 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feferman, S.: Transfinite recursive progressions of axiomatic theories. J.Symb. Logic 27, 259–316 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feferman, S.: Systems of predicative analysis I. J. Symb.Logic 29, 1–30 (1964)

    Google Scholar 

  11. Feferman, S.: Systems of predicative analysis II. J. Symb. Logic 33(2), 193–220 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feferman, S.: A more perspicuous formal system for predicativity. In: Lorenz, K. (ed.) Konstruktionen versus Positionen, vol. I, pp. 68–93. de Gruyter, Berlin (1978)

    Google Scholar 

  13. Feferman, S.: Constructive theories of functions and classes. In: Boffa, M., van Dalen, D., McAloon, K. (eds.) Logic Colloquium ’78: Proceedings of the Colloquium held in Mons, August 1978, pp. 159–224. North-Holland, Amsterdam, New York and Oxford (1979)

    Google Scholar 

  14. Feferman, S.: Iterated inductive fixed-point theories: application to Hancock’s conjecture. In: Metakides, G. (ed.) Patras Logic Symposion, pp. 171–195, Amsterdam, North Holland (1982)

    Google Scholar 

  15. Feferman, S.: Towards useful type-free theories I. J. Symb. Logic 49, 75–111 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feferman, S.: Reflecting on incompleteness (outline draft). handwritten notes (1987)

    Google Scholar 

  17. Feferman, S.: Reflecting on incompleteness. J. Symb. Logic 56, 1–49 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feferman, S.: Axioms for determinateness and truth. Rev. Symb. Logic 1, 204–217 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Feferman, S.: Axiomatizing truth: Why and how. In: Berger, U., Diener, H., Schuster, P. (eds.) Logic, Construction, Computation, 185–200. Ontos, Frankfurt (2012)

    Google Scholar 

  20. Feferman, S., Strahm, T.: The unfolding of non-finitist arithmetic. Rev. Symb. Logic 3, 665–689 (2000)

    Article  MATH  Google Scholar 

  21. Feferman, S., Strahm, T.: Unfolding finitist arithmetic. Ann. Pure Appl. Logic 104, 75–96 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Field, H.: Tarski’s theory of truth. J. Philos. 69, 347–375 (1972)

    Article  Google Scholar 

  23. Field, H.: Deflating the conservativeness argument. J. Philos. 96(10), 533–40 (1999)

    Article  MathSciNet  Google Scholar 

  24. Field, H.: Saving Truth From Paradox. Oxford University Press, Oxford (2008)

    Book  MATH  Google Scholar 

  25. Friedman, H., Sheard, M.: An axiomatic approach to self-referential truth. Ann. Pure Appl. Logic 33, 1–21 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fujimoto, K.: Relative truth definability of axiomatic truth theories. Bull. Symb. Logic 16, 305–344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fujimoto, K.: Autonomous progression and transfinite iteration of self-applicable truth. J. Symb. Logic 76, 914–945 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fujimoto, K.: Classes and truths in set theory. Ann. Pure Appl. Logic 163, 1484–1523 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik 38, 173–198 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gupta, A.: Truth and paradox. J. Philos. Logic 11, 1–60 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  31. Halbach, V.: Disquotationalism and infinite conjunctions. Mind 108, 1–22 (1999)

    Article  MathSciNet  Google Scholar 

  32. Halbach, V.: How not to state the T-sentences. Analysis 66, 276–280 (2006). Correction of printing error in 67, 268

    Google Scholar 

  33. Halbach, V.: Axiomatic Theories of Truth, revised edition. Cambridge University Press, Cambridge (2014). first edition 2011

    Google Scholar 

  34. Halbach, V., Horsten, L.: Axiomatizing Kripke’s theory of truth. J. Symb. Logic 71, 677–712 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Herzberger, H.G.: Notes on naive semantics. J. Philos. Logic 11, 61–102 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  36. Horsten, L., Leigh, G., Leitgeb, H., Welch, P.: Revision revisited. Rev. Symb. Logic 5, 642–664 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Horwich, P.: Truth, 2nd edn. Oxford University Press, Oxford (1998). first edition 1990

    Google Scholar 

  38. Jäger, G., Kahle, R., Setzer, A., Strahm, T.: The proof-theoretic analysis of transfinitely iterated fixed point theories. J. Symb. Logic 64(1), 53–67 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Koellner, P.: On reflection principles. Ann. Pure Appl. Logic 157, 206–219 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kreisel, G.: Ordinal logics and the characterization of informal notions of proof. In: Todd, J.A. (ed.) Proceedings of the International Congress of Mathematicians, Edinburgh 1958, pp. 289–299, Cambridge University Press, Cambridge (1960)

    Google Scholar 

  41. Kreisel, G., Lévy, A.: Reflection principles and their use for establishing the complexity of axiomatic systems. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 14, 97–142 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kripke, S.: Outline of a theory of truth. J. Philos. 72, 690–712 (1975). reprinted in Martin (1984)

    Google Scholar 

  43. Leitgeb, H.: Poppers Wahrheitstheorie(n). In: Morscher, E (ed.) Was wir Karl R. Popper und seiner Philosophie verdanken: Zu seinem 100. Geburtstag, ProPhil \(\cdot \) Projekte zur Philosophie, pp. 185–217. Academia Verlag, Sankt Augustin (2002)

    Google Scholar 

  44. Leitgeb, H.: What theories of truth should be like (but cannot be). In: Blackwell Philosophy Compass 2/2, pp. 276–290. Blackwell (2007)

    Google Scholar 

  45. Manaster, A.B., Payne, T.H., Harrah, D.: Meeting of the Association of Symbolic Logic, San Diego 1979. J. Symb. Logic 46, 199 (1981)

    Google Scholar 

  46. McGee, V.: Truth, Vagueness, and Paradox: An Essay on the Logic of Truth. Hackett Publishing, Indianapolis and Cambridge (1991)

    MATH  Google Scholar 

  47. McGee, V.: In praise of the free lunch: Why disquotationalists should embrace compositional semantics. In: Hendricks, V.F., Pedersen, S.A. (eds.) Self-Reference, vol. 178, pp. 95–120. CSLI Publications, Stanford (2006)

    Google Scholar 

  48. Putnam, H.: A comparison of something with something else. New Lit. Hist. 17(1), 61–79 (1985). Reprinted in (Putnam 1994, 330-50)

    Google Scholar 

  49. Reinhardt, W.: Remarks on significance and meaningful applicability. In: de Alcantara, L.P. (ed.) Mathematical Logic and Formal Systems: A Collection of Papers in Honor of Professor Newton C.A. Da Costa. Lecture Notes in Pure and Applied Mathematics, vol. 94, pp. 227–242. Marcel Dekker inc. (1985)

    Google Scholar 

  50. Reinhardt, W.: Some remarks on extending and interpreting theories with a partial predicate for truth. J. Philos. Logic 15, 219–251 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  51. Russell, B.: On some difficulties in the theory of transfinite numbers and order types. Proc. Lond. Math. Soc. 4, 29–53 (1906)

    MathSciNet  MATH  Google Scholar 

  52. Russell, B.: Mathematical logic as based on the theory of types. Am. J. Math. 30, 222–262 (1908)

    Google Scholar 

  53. Schindler, T.: Type-free truth. Ph.D. Thesis, Ludwig-Maximilians-Universität München (2014)

    Google Scholar 

  54. Schütte, K.: Proof Theory. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  55. Schwichtenberg, H., Wainer, S.: Proofs and Computations. Perspectives in Logic. Association of Symbolic Logic and Cambridge University Press, Cambridge (2012)

    Google Scholar 

  56. Shapiro, S.: Proof and truth: through thick and thin. J. Philos. 95, 493–521 (1998)

    MathSciNet  Google Scholar 

  57. Simpson, S.: Subsystems of Second Order Arithmetic. Springer, Berlin (1998)

    MATH  Google Scholar 

  58. Tarski, A.: Der Wahrheitsbegriff in den formalisierten Sprachen. Studia Philosophica Commentarii Societatis Philosophicae Polonorum 1, 261–405 (1935). translation of Tarski (1936) by L. Blaustein, translated as ‘The Concept of Truth in Formalized Languages’ in (Tarski 1956, 152–278)

    Google Scholar 

  59. Turing, A.: Systems of logic based on ordinals. Proc. Lond. Math. Soc. 45, 161–228 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  60. Visser, A.: Four-valued semantics and the liar. J. Philos. Logic 13, 181–212 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cantini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cantini, A., Fujimoto, K., Halbach, V. (2017). Feferman and the Truth. In: Jäger, G., Sieg, W. (eds) Feferman on Foundations. Outstanding Contributions to Logic, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-63334-3_11

Download citation

Publish with us

Policies and ethics