Skip to main content

Unfolding Schematic Systems

  • Chapter
  • First Online:
Feferman on Foundations

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 13))

Abstract

The notion of unfolding a schematic formal system was introduced by Feferman in 1996 in order to answer the following question: Given a schematic system \(\mathsf {S}\), which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted \(\mathsf {S}\)? After a short summary of precursors of the unfolding program, we survey the unfolding procedure and discuss the main results obtained for various schematic systems S, including non-finitist arithmetic, finitist arithmetic, feasible arithmetic, and theories of inductive definitions.

To Sol, with gratitude for his intellectual inspiration and friendship

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The constants \(\mathsf {sc}\) and \(\mathsf {pd}\) as well as the relation symbol \(\mathsf {N}\) are used instead of the symbols \(\mathsf {Sc}^{\star }\), \(\mathsf {Pd}^{\star }\), and \(\mathsf {U}_{\mathsf {NFA}}\) mentioned in the informal description above.

  2. 2.

    Note that this relativization also includes axioms such as \(0\in \mathsf {N}\) and \((\forall x\in \mathsf {N})(x'\in \mathsf {N})\).

  3. 3.

    Observe that \(\mathsf {nat}\) is alternatively definable from the remaining predicate axioms by \(x\in \mathsf {nat}\leftrightarrow (\exists y\in \mathsf {N})(x=y)\).

  4. 4.

    Observe that derivability of rules is a dynamic process as we unfold \(\mathsf {FA}\). In particular, new rules of inference obtained by \((\mathsf {Subst'})\) allow us to establish new derivable rules, to which in turn we can apply \((\mathsf {Subst'})\). In particular, the usual rule of induction

    $$ \dfrac{\Gamma \,\rightarrow \,A[0] \quad \Gamma ,\, u\in \mathsf {N},\, A[u]\,\rightarrow \,A[u']}{\Gamma ,\, v\in \mathsf {N}\,\rightarrow \,A[v]} $$

    is an immediate consequence of \((\mathsf {Subst'})\) applied to rule (3) of \(\mathsf {FA}\). Moreover, the substitution rule in its usual form as stated in Sect. 2,

    $$\begin{aligned} \dfrac{\Sigma [\bar{P}]}{ \Sigma [\bar{B}/\bar{P}]} {(\mathsf {Subst})} \end{aligned}$$

    is readily seen to be an admissible rule of inference of \(\mathcal {U}_0(\mathsf {FA})\).

  5. 5.

    In the formulation of the rules below we use a binary relation \(\prec \) whose characteristic function is given by a closed term \(t_{\prec }\) for which \(\mathcal {U}_0(\mathsf {FA})\) proves \(t_{\prec }: \mathsf {N}^2 \rightarrow \{0,1\}\). We write \(x \prec y\) instead of \(t_{\prec }xy=0\) and further assume that \(\prec \) is a linear ordering with least element 0, provably in \(\mathcal {U}_0(\mathsf {FA})\).

  6. 6.

    In the formulation of this rule, we have used the shorthand \(r \prec x \supset A\) for the formula \(t_{\prec } r x =1 \vee A\).

  7. 7.

    Given two words \(w_1\) and \(w_2\), the word \(w_1 \boxtimes w_2\) denotes the length of \(w_2\) fold concatenation of \(w_1\) with itself.

  8. 8.

    We assume that \(\subseteq \) defines the characteristic function of the initial subword relation. Further, we employ infix notation for these binary function symbols.

  9. 9.

    These variables are syntactically different from the \(\mathsf {FEA}\) variables \(\alpha _0,\alpha _1,\ldots \).

  10. 10.

    It is important to note that we do not have a predicate \(\mathsf {W}\) for binary words in our language, since this would allow us to introduce (hidden) unbounded existential quantifiers via formulas of the form \(\mathsf {W}(t)\). Thus it is necessary to have two separate sets of variables for words and operations, respectively.

  11. 11.

    We can assume that only functions built from concatenation and multiplication are permissible bounds for the recursion.

  12. 12.

    Recall that by expanding the definition of the \(\le \) relation, the formula \(A[\beta ]\) stands for the assertion \((\exists \gamma \le \tau [\bar{\alpha },\beta ])(t_F(\bar{\alpha },\beta ) =\gamma )\).

  13. 13.

    Recall that in Feferman’s original definition of unfolding in [15], a truth predicate is used in order to describe the full unfolding of a schematic system.

References

  1. Beeson, M.J.: Foundations of Constructive Mathematics: Metamathematical Studies. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  2. Buchholtz, U.: Unfolding of systems of inductive definitions. Ph.D. thesis, Stanford University (2013)

    Google Scholar 

  3. Buchholtz, U., Jäger, G., Strahm, T.: Theories of proof-theoretic strength \(\Psi (\Gamma _{\Omega +1})\). In: Probst, D., Schuster, P. (eds.) Concepts of Proof in Mathematics, Philosophy, and Computer Science of Ontos Mathematical Logic. vol. 6, pp. 115–140. De Gruyter (2016)

    Google Scholar 

  4. Clote, P.: Computation models and function algebras. In: Griffor, E. (ed.) Handbook of Computability Theory, pp. 589–681. Elsevier (1999)

    Google Scholar 

  5. Cobham, A.: The intrinsic computational difficulty of functions. In: Logic, Methodology and Philosophy of Science II, pp. 24–30. North Holland, Amsterdam (1965)

    Google Scholar 

  6. Eberhard, S.: Weak Applicative Theories, Truth, and Computational Complexity. Ph.D. thesis, Universität Bern (2013)

    Google Scholar 

  7. Eberhard, S.: A feasible theory of truth over combinatory algebra. Ann. Pure Appl. Log. 165(5), 1009–1033 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eberhard, S., Strahm, T.: Weak theories of truth and explicit mathematics. In: Berger, U., Diener, H., Schuster, P., Seisenberger, M. (eds.) Logic, Construction, Computation, pp. 157–184. Ontos Verlag (2012)

    Google Scholar 

  9. Eberhard, S., Strahm, T.: Unfolding feasible arithmetic and weak truth. In: Achourioti, D., Galinon, H., Fujimoto, K., Martinez, J. (eds.) Unifying the Philosophy of Truth, pp. 153–167. Springer (2015)

    Google Scholar 

  10. Feferman, S.: Transfinite recursive progressions of axiomatic theories. J. Symb. Log. 27, 259–316 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feferman, S.: Systems of predicative analysis. J. Symb. Log. 29(1), 1–30 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feferman, S.: A language and axioms for explicit mathematics. In: Crossley, J. (ed.) Algebra and Logic of Lecture Notes in Mathematics, vol. 450, pp. 87–139. Springer (1975)

    Google Scholar 

  13. Feferman, S.: A more perspicuous system for predicativity. In: Konstruktionen vs. Positionen I. de Gruyter, pp. 87–139. Berlin (1979)

    Google Scholar 

  14. Feferman, S.: Reflecting on incompleteness. J. Symb. Log. 56(1), 1–49 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feferman, S.: Gödel’s program for new axioms: Why, where, how and what? In: Hájek, P. (ed.) Gödel 1996 of Lecture Notes in Logic, vol. 6, pp. 3–22. Springer, Berlin (1996)

    Google Scholar 

  16. Feferman, S.: Operational set theory and small large cardinals. Inf. Comput. 207, 971–979 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feferman, S.: Turing’s Thesis: Ordinal logics and oracle computability. In: Cooper, S.B., Van Leeuwen, J. (eds.) Alan Turing: His Work and Impact, pp. 145–150. Elsevier (2013)

    Google Scholar 

  18. Feferman, S.: The operational perspective: three routes. In: Kahle, R., Strahm, T., Studer, T. (eds.) Advances in Proof Theory of Progress in Computer Science and Applied Logic, vol. 28, pp. 269–289. Birkhäuser (2016)

    Google Scholar 

  19. Feferman, S., Spector, C.: Incompleteness along paths in progressions of theories. J. Symb. Log. 27, 383–390 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. Feferman, S., Strahm, T.: The unfolding of non-finitist arithmetic. Ann. Pure Appl. Log. 104(1–3), 75–96 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feferman, S., Strahm, T.: Unfolding finitist arithmetic. Rev. Symb. Log. 3(4), 665–689 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ferreira, F.: Polynomial time computable arithmetic. In: Sieg, W. (ed.) Logic and Computation, Proceedings of a Workshop held at Carnegie Mellon University, 1987, Contemporary Mathematics, vol. 106, pp. 137–156. American Mathematical Society, Providence, Rhode Island (1990)

    Google Scholar 

  23. Franzén, T.: Transfinite progressions: a second look at completeness. Bull. Symb. Log. 10(3), 367–389 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gödel, K.: Collected Works. In: Feferman, S. et al., (eds.) Vol. II. Oxford University Press, New York (1990)

    Google Scholar 

  25. Jäger, G.: On Feferman’s operational set theory OST. Ann. Pure Appl. Log. 150(1–3), 19–39 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kreisel, G.: Ordinal logics and the characterization of informal concepts of proof. In: Proceedings International Congress of Mathematicians, 14–21 August 1958, pp. 289–299. Cambridge University Press, Cambridge (1960)

    Google Scholar 

  27. Kreisel, G.: Mathematical logic. In: Saaty, T.L. (ed.) Lectures on Modern Mathematics, vol. 3, pp. 95–195. Wiley, New York (1965)

    Google Scholar 

  28. Kreisel, G.: Principles of proof and ordinals implicit in given concepts. In: Kino, A., Myhill, J., Vesley, R.E. (eds.) Intuitionism and Proof Theory, pp. 489–516. North Holland, Amsterdam (1970)

    Google Scholar 

  29. Kripke, S.: Outline of a theory of truth. J. Philos. 72(19), 690–716 (1975)

    Article  MATH  Google Scholar 

  30. Rathjen, M.: The role of parameters in bar rule and bar induction. J. Symb. Log. 56(2), 715–730 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schütte, K.: Eine Grenze für die Beweisbarkeit der transfiniten Induktion in der verzweigten Typenlogik. Archiv für Mathematische Logik und Grundlagen der Mathematik 7, 45–60 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sieg, W.: Herbrand analyses. Arch. Math. Log. 30(5+6), 409–441 (1991)

    Google Scholar 

  33. Strahm, T.: The non-constructive \(\mu \) operator, fixed point theories with ordinals, and the bar rule. Ann. Pure Appl. Log. 104(1–3), 305–324 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tait, W.: Nested recursion. Mathematische Annalen 143, 236–250 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tait, W.: Finitism. J. Philos. 78, 524–546 (1981)

    Article  Google Scholar 

  36. Turing, A.: Systems of logic based on ordinals. Proc. London Math. Soc. 2nd Ser. 45(I), 161–228 (1939)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Strahm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strahm, T. (2017). Unfolding Schematic Systems. In: Jäger, G., Sieg, W. (eds) Feferman on Foundations. Outstanding Contributions to Logic, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-63334-3_8

Download citation

Publish with us

Policies and ethics