Skip to main content

MantisBot Changes Stepping Speed by Entraining CPGs to Positive Velocity Feedback

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

This paper demonstrates and analyzes how CPGs can entrain joints of a praying mantis robot (MantisBot) to positive velocity feedback resulting in a duration change of a leg’s stance phase. We use a model of a single leg segment, as well as previously presented design techniques to understand how the gain of positive velocity feedback to the CPGs should be modulated to successfully implement the active reaction (AR) during walking. Our results suggest that the AR simplifies the descending control of walking speed, naturally producing the asymmetrical changes in stance and swing phase duration seen in walking animals. We implement the AR in neural circuits of a dynamic network that control leg joints of MantisBot, and experiments confirm that the robot modulates its walking speed as the simple model predicted. Aggregating the data from hundreds of steps in different walking directions show that the robot changes speed by altering the duration of stance phase while swing phase remains unaffected, as seen in walking animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cruse, H.: Which parameters control the leg movement of a walking insect?: I. Velocity control during the stance phase. J. Exp. Biol. 116, 343–355 (1985)

    Google Scholar 

  2. Gruhn, M., von Uckermann, G., Westmark, S., et al.: Control of stepping velocity in the stick insect Carausius morosus. J. Neurophysiol. 102, 1180–1192 (2009). doi:10.1152/jn.00257.2009

    Article  Google Scholar 

  3. Gabriel, J.P., Büschges, A.: Control of stepping velocity in a single insect leg during walking. Philos. Trans. A Math. Phys. Eng. Sci. 365, 251–271 (2007). doi:10.1098/rsta.2006.1912

    Article  Google Scholar 

  4. Foth, E., Graham, D.: Influence of loading parallel to the body axis on the walking coordination of an insect – I. Ipsilateral effects. Biol. Cybern. 47, 17–23 (1983). doi:10.1007/BF00340065

    Google Scholar 

  5. Ryckebusch, S., Laurent, G.: Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine. J. Neurophysiol. 69, 1583–1595 (1993)

    Google Scholar 

  6. Büschges, A., Schmitz, J., Bässler, U.: Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. J. Exp. Biol. 198, 435–456 (1995)

    Google Scholar 

  7. Daun-Gruhn, S., TĂłth, T.I.: An inter-segmental network model and its use in elucidating gait-switches in the stick insect. J. Comput. Neurosci. (2010). doi:10.1007/s10827-010-0300-1

    Google Scholar 

  8. Sauer, A.E., Büschges, A., Stein, W.: Role of presynaptic inputs to proprioceptive afferents in tuning sensorimotor pathways of an insect joint control network. J. Neurobiol. 32, 359–376 (1997). doi:10.1002/(SICI)1097-4695(199704)32:4<359:AID-NEU1>3.0.CO;2-5

    Article  Google Scholar 

  9. Berendes, V., Zill, S.N., BĂĽschges, A., BockemĂĽhl, T.: Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila. J. Exp. Biol. (2016). doi:10.1242/jeb.146720

  10. Bässler, U.: Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences. J. Exp. Biol. 136, 125–147 (1988)

    Google Scholar 

  11. Akay, T., Büschges, A.: Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects. J. Neurophysiol. 96, 3532–3537 (2006)

    Article  Google Scholar 

  12. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. (2017). doi:10.1007/s00422-017-0711-4

    MathSciNet  Google Scholar 

  13. Cofer, D.W., Cymbalyuk, G., Reid, J., et al.: AnimatLab: a 3D graphics environment for neuromechanical simulations. J. Neurosci. Methods 187, 280–288 (2010). doi:10.1016/j.jneumeth.2010.01.005

    Article  Google Scholar 

  14. Hodgkin, A.L., Huxley, A.F., Katz, B.: Measurement of Current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 442–448 (1952)

    Google Scholar 

  15. Selverston, A.I., Moulins, M.: Oscillatory neural networks. Annu. Rev. Physiol. 47, 29–48 (1985)

    Article  Google Scholar 

  16. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design methodology for synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. (2017, in review)

    Google Scholar 

  17. Szczecinski, N.S., Getsy, A.P., Martin, J.P., et al.: MantisBot is a robotic model of visually guided motion in the praying mantis. Arthropod. Struct. Dev. (2017). doi:10.1016/j.asd.2017.03.001

  18. Martin, J.P., Guo, P., Mu, L., et al.: Central-complex control of movement in the freely walking cockroach. Curr. Biol. 25, 2795–2803 (2015). doi:10.1016/j.cub.2015.09.044

    Article  Google Scholar 

  19. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: Design process and tools for dynamic neuromechanical models and robot controllers. Biol. Cybern. (2017). doi:10.1007/s00422-017-0711-4

    MathSciNet  Google Scholar 

  20. Bässler, U.: The femur-tibia control system of stick insects–a model system for the study of the neural basis of joint control. Brain Res. Rev. 18, 207–226 (1993)

    Article  Google Scholar 

  21. Schmitz, J., Bartling, C., Brunn, D.E., et al.: Adaptive properties of hard-wired neuronal systems. Verh dt zool 88(2), 95–105 (1995)

    Google Scholar 

  22. Schmitz, J., Schneider, A., Schilling, M., Cruse, H.: No need for a body model: positive velocity feedback for the control of an 18-DOF robot walker. Appl. Bionics Biomech. 5, 135–147 (2008). doi:10.1080/11762320802221074

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas S. Szczecinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Szczecinski, N.S., Quinn, R.D. (2017). MantisBot Changes Stepping Speed by Entraining CPGs to Positive Velocity Feedback. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics