Skip to main content

The Search Complexity of Collaborative Swarms in Expanding \(\mathbf{Z}^{2}\) Grid Regions

  • Chapter
  • First Online:
Swarms and Network Intelligence in Search

Part of the book series: Studies in Computational Intelligence ((SCI,volume 729))

  • 977 Accesses

Abstract

In this paper we study the strengths and limitations of collaborative swarms of simple agents. In particular, we discuss the efficient use of simple drones, or “ant robots” for covering a connected region on the \(\mathbf{Z}^{2}\) grid, whose area is unknown in advance, and which expands at a given rate, where n is the initial size of the connected region. We show that regardless of the algorithm used, and the robots’ hardware and software specifications, the minimal number of robots required in order for such coverage to be possible is \(\varOmega ({\sqrt{n}})\). In addition, we show that when the region expands at a sufficiently slow rate, a team of \(\varTheta (\sqrt{n})\) robots could cover it in at most \(O(n^{2} \ln n)\) time. This completion time can even be achieved by myopic robots, with no ability to directly communicate with each other, and where each robot is equipped with a memory of size O(1) bits w.r.t the size of the region (therefore, the robots cannot maintain maps of the terrain, nor plan complete paths). Regarding the coverage of non-expanding regions in the grid, we improve the current best known result of \(O(n^{2})\) by demonstrating an algorithm that guarantees such a coverage with completion time of \(O(\frac{1}{k} n^{1.5} + n)\) in the worst case, and faster for shapes of perimeter length which is shorter than O(n).

This chapter is based on work previously published in parts in [16, 17, 19].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For counting purposes the agents must be equipped with counters that can store the number of agents in their immediate vicinity. This can of course be implemented using \(O(\log k)\) memory. However, throughout the proof of Lemma 5 in [85] it is shown that the maximal number of agents that may simultaneously reside in the same tile at any given moment is upper bounded by O(1). Therefore, counting the agents in the immediate vicinity can be done using counters of O(1) bits.

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions. Applied Mathematics Series (National Bureau of Standards 1964), p. 55

    Google Scholar 

  2. E.U. Acar, Y. Zhang, H. Choset, M. Schervish, A.G. Costa, R. Melamud, D.C. Lean, A. Gravelin, Path planning for robotic demining and development of a test platform, in International Conference on Field and Service Robotics (2001), pp. 161–168

    Google Scholar 

  3. N. Agmon, S. Kraus, G.A. Kaminka. Multi-robot perimeter patrol in adversarial settings, in IEEE International Conference on Robotics and Automation (ICRA 2008) (2008), pp. 2339–2345

    Google Scholar 

  4. N. Agmon, V. Sadov, G.A. Kaminka, S. Kraus, The impact of adversarial knowledge on adversarial planning in perimeter patrol, in AAMAS ’08: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2008), pp. 55–62

    Google Scholar 

  5. A. Agogino, K. Tumer, Regulating air traffic flow with coupled agents, in AAMAS ’08: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2008), pp. 535–542

    Google Scholar 

  6. R. Alami, S. Fleury, M. Herrb, F. Ingrand, F. Robert, Multi-robot cooperation in the martha project. IEEE Robot. Autom. Mag. 5(1), 36–47 (1998)

    Article  Google Scholar 

  7. Y. Altshuler, A.M. Bruckstein, I.A. Wagner, Swarm robotics for a dynamic cleaning problem, in IEEE Swarm Intelligence Symposium (2005), pp. 209–216

    Google Scholar 

  8. Y. Altshuler, M. Fire, N. Aharony, Y. Elovici, A Pentland, How many makes a crowd? on the correlation between groups’ size and the accuracy of modeling, in International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction (Springer, 2012), pp. 43–52

    Google Scholar 

  9. Y. Altshuler, I.A. Wagner, A.M. Bruckstein, Shape factor‘s effect on a dynamic cleaners swarm, in Third International Conference on Informatics in Control, Automation and Robotics (ICINCO), the Second International Workshop on Multi-Agent Robotic Systems (MARS) (2006), pp. 13–21

    Google Scholar 

  10. Y. Altshuler, I.A. Wagner, A.M. Bruckstein, On swarm optimality in dynamic and symmetric environments. Economics 7, 11 (2008)

    Google Scholar 

  11. Y. Altshuler, I.A. Wagner, A.M. Bruckstein, Collaborative exploration in grid domains, in Sixth International Conference on Informatics in Control, Automation and Robotics (ICINCO) (2009)

    Google Scholar 

  12. Y. Altshuler, I.A. Wagner, A.M. Bruckstein, Swarm ant robotics for a dynamic cleaning problem — upper bounds, in The 4th International conference on Autonomous Robots and Agents (ICARA-2009) (2009), pp. 227–232

    Google Scholar 

  13. Y. Altshuler, I.A. Wagner, V. Yanovski, A.M. Bruckstein, Multi-agent cooperative cleaning of expanding domains. Int. J. Robot. Res. 30, 1037–1071 (2010)

    Article  Google Scholar 

  14. Y. Altshuler, V. Yanovski, I.A. Wagner, A.M. Bruckstein, The cooperative hunters - efficient cooperative search for smart targets using uav swarms, in Second International Conference on Informatics in Control, Automation and Robotics (ICINCO), the First International Workshop on Multi-Agent Robotic Systems (MARS) (2005), pp. 165–170

    Google Scholar 

  15. Y. Altshuler, V. Yanovsky, A.M. Bruckstein, I.A. Wagner, Efficient cooperative search of smart targets using uav swarms. Robotica 26, 551–557 (2008)

    Article  Google Scholar 

  16. Y. Altshuler, V. Yanovsky, I. Wagner, A. Bruckstein. Swarm intelligencesearchers, cleaners and hunters, in Swarm Intelligent Systems (2006), pp. 93–132

    Google Scholar 

  17. Y. Altshuler, Multi Agents Robotics in Dynamic Environments. Ph.D. thesis, Israeli Institute of Technology (2010)

    Google Scholar 

  18. Y. Altshuler, A.M. Bruckstein, The complexity of grid coverage by swarm robotics, in ANTS 2010 (LNCS, 2010), pp. 536–543

    Google Scholar 

  19. Y. Altshuler, A.M. Bruckstein, Static and expanding grid coverage with ant robots: complexity results. Theor. Comput. Sci. 412(35), 4661–4674 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Y. Altshuler, S. Dolev, Y. Elovici, N. Aharony, Ttled random walks for collaborative monitoring, in NetSciCom, Second International Workshop on Network Science for Communication Networks, vol. 3 (San Diego, CA, USA, 2010)

    Google Scholar 

  21. Y. Altshuler, A. Pentland, S. Bekhor, Y. Shiftan, A. Bruckstein, Optimal dynamic coverage infrastructure for large-scale fleets of reconnaissance uavs (2016), arXiv:1611.05735

  22. Y. Altshuler, R. Puzis, Y. Elovici, S. Bekhor, A.S. Pentland, On the rationality and optimality of transportation networks defense: a network centrality approach, in Securing Transportation Systems, pp. 35–63

    Google Scholar 

  23. Y. Altshuler, E. Shmueli, G. Zyskind, O. Lederman, N. Oliver, A. Pentland, Campaign optimization through behavioral modeling and mobile network analysis. IEEE Trans. Comput. Soc. Syst. 1(2), 121–134 (2014)

    Article  Google Scholar 

  24. Y. Altshuler, E. Shmueli, G. Zyskind, O. Lederman, N. Oliver, A.S. Pentland, Campaign optimization through mobility network analysis, in Geo-Intelligence and Visualization Through Big Data Trends (2015), pp. 33–74

    Google Scholar 

  25. T. Balch, R. Arkin, Behavior-based formation control for multi-robot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  26. M.A. Batalin, G.S. Sukhatme, Spreading out: a local approach to multi-robot coverage, in 6th International Symposium on Distributed Autonomous Robotics Systems (2002)

    Google Scholar 

  27. K. Bendjilali, F. Belkhouche, B. Belkhouche, Robot formation modelling and control based on the relative kinematics equations. Int. J. Robot. Autom. 24(1), 79–88 (2009)

    Google Scholar 

  28. G. Beni, J. Wang, Theoretical problems for the realization of distributed robotic systems, in IEEE Internal Conference on Robotics and Automation (1991), pp. 1914–1920

    Google Scholar 

  29. R.M. Bhatt, C.P. Tang, V.N. Krovi, Formation optimization for a fleet of wheeled mobile robots a geometric approach. Robot. Auton.Syst. 57(1), 102–120 (2009)

    Article  Google Scholar 

  30. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, US, 1999)

    MATH  Google Scholar 

  31. R. Borie, C. Tovey, S. Koenig, Algorithms and complexity results for pursuit-evasion problems, in Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (2009), pp. 59–66

    Google Scholar 

  32. V. Braitenberg, Vehicles (MIT Press, Cambridge, 1984)

    Google Scholar 

  33. A.Z. Broder, A.R. Karlin, P. Raghavan, E. Upfal, Trading space for time in undirected \(s-t\) connectivity, in ACM Symposium on Theory of Computing (STOC) (1989), pp. 543–549

    Google Scholar 

  34. Z. Butler, A. Rizzi, R. Hollis, Distributed coverage of rectilinear environments, in Proceedings of the Workshop on the Algorithmic Foundations of Robotics (2001)

    Google Scholar 

  35. C. Candea, H. Hu, L. Iocchi, D. Nardi, M. Piaggio, Coordinating in multi-agent robocup teams. Robot. Auton. Syst. 36(2–3), 67–86 (2001)

    Article  MATH  Google Scholar 

  36. G. Chalkiadakis, C. Boutilier, Sequential decision making in repeated coalition formation under uncertainty, in Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems (2008), pp. 347–354

    Google Scholar 

  37. H. Chung, E. Polak, J.O. Royset, S. Sastry, On the optimal detection of an underwater intruder in a channel using unmanned underwater vehicles. Naval Res. Logist. (NRL), 58(8), 804–820 (2011)

    Google Scholar 

  38. R. Connaughton, P. Schermerhorn, M. Scheutz. Physical parameter optimization in swarms of ultra-low complexity agents, in AAMAS ’08: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2008), pp. 1631–1634

    Google Scholar 

  39. S.A. DeLoach, M. Kumar, in Intelligence Integration in Distributed Knowledge Management, Multi-agent systems engineering: an overview and case study (Idea Group Inc (IGI), 2008), pp. 207–224

    Google Scholar 

  40. G. Dudek, M. Jenkin, E. Milios, D. Wilkes, Robotic exploration as graph construction. IEEE Trans. Robot. Autom. 7, 859–865 (1991)

    Article  Google Scholar 

  41. A. Efraim, D. Peleg, Distributed algorithms for partitioning a swarm of autonomous mobile robots. Struct. Inf. Commun. Complex. Lect. Notes Comput. Sci. 4474, 180–194 (2007)

    MathSciNet  MATH  Google Scholar 

  42. U. Visser et al., RoboCup 2007: Robot Soccer World Cup XI, vol. 5001, Lecture Notes in Computer Science (Springer, Berlin, 2008)

    Book  Google Scholar 

  43. A. Felner, Y. Shoshani, Y. Altshuler, A.M. Bruckstein, Multi-agent physical a* with large pheromones. J. Auton. Agents Multi-Agent Syst. 12(1), 3–34 (2006)

    Article  Google Scholar 

  44. J.O. Flynn, Lion and man: the general case. SIAM J. Control 12, 581–597 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Fredslund, M.J. Mataric, Robot formations using only local sensing and control, in Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation (IEEE CIRA 2001) (2001), pp. 308–313

    Google Scholar 

  46. A.S. Goldstein, E.M. Reingold, The complexity of pursuit on a graph. Theor. Comput. Sci. 143, 93–112 (1995)

    Google Scholar 

  47. N. Gordon, I.A. Wagner, A.M. Bruckstein. Discrete bee dance algorithms for pattern formation on a grid, in IEEE International Conference on Intelligent Agent Technology (IAT03) (2003), pp. 545–549

    Google Scholar 

  48. I. Harmatia, K. Skrzypczykb, Robot team coordination for target tracking using fuzzy logic controller in game theoretic framework. Robot. Auton. Syst. 57(1), 75–86 (2009)

    Article  Google Scholar 

  49. G. Hollinger, S. Singh, J. Djugash, A. Kehagias, Efficient multi-robot search for a moving target. Int. J. Robot. Res. 28(2), 201–219 (2009)

    Article  Google Scholar 

  50. R.P. Isaacs, Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization (Wiley, New York, 1965). Reprinted by Dover Publications 1999

    MATH  Google Scholar 

  51. V. Isler, S. Kannan, S. Khanna, Randomized pursuit-evasion with local visibility. SIAM J. Discret. Math. 20, 26–41 (2006)

    Google Scholar 

  52. J. Jonasson, O. Schramm, On the cover time of planar graphs. Electron. Comm. Probab. 5, 85–90 (2000), (electronic)

    Google Scholar 

  53. S. Koenig, Y. Liu. Terrain coverage with ant robots: a simulation study, in AGENTS’01 (2001)

    Google Scholar 

  54. S. Koenig, B. Szymanski, Y. Liu, Efficient and inefficient ant coverage methods. Ann. Math. Artif. Intell. 31, 41–76 (2001)

    Article  Google Scholar 

  55. S. Koenig, M. Likhachev, X. Sun. Speeding up moving-target search, in AAMAS ’07: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems (ACM, New York, NY, USA, 2007), pp. 1–8

    Google Scholar 

  56. B. Koopman, Search and Screening: General Principles with Historical Applications (Pergamon Press, Oxford, 1980)

    MATH  Google Scholar 

  57. R. Korf, Real-time heuristic search. Artifi. Intell. 42, 189–211 (1990)

    Article  MATH  Google Scholar 

  58. S. Kraus, O. Shehory, G. Taase, Coalition formation with uncertain heterogeneous information, in Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems (2003), pp. 1–8

    Google Scholar 

  59. P. Lanillos, S.K. Gan, E. Besada-Portas, G. Pajares, S. Sukkarieh, Multi-uav target search using decentralized gradient-based negotiation with expected observation. Inf. Sci. 282, 92–110 (2014)

    Google Scholar 

  60. S.M. LaValle, D. Lin, L.J. Guibas, J.C. Latombe, R. Motwani, Finding an unpredictable target in a workspace with obstacles, in Proceedings of the 1997 IEEE International Conference on Robotics and Automation (ICRA-97) (1997), pp. 737–742

    Google Scholar 

  61. Y.-Y. Liu, J.C Nacher, T. Ochiai, M. Martino, Y. Altshuler, Prospect theory for online financial trading. PloS one 9(10), e109458 (2014)

    Google Scholar 

  62. L. Lovasz. Random walks on graphs: a survey. Combinatorics, Paul Erdos is Eighty, 2, 353–398 (1996)

    Google Scholar 

  63. D. MacKenzie, R. Arkin, J. Cameron, Multiagent mission specification and execution. Auton. Robots 4(1), 29–52 (1997)

    Article  Google Scholar 

  64. E. Manisterski, R. Lin, S. Kraus, Understanding how people design trading agents over time, in AAMAS ’08: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2008), pp. 1593–1596

    Google Scholar 

  65. S. Mastellone, D.M. Stipanovi, C.R. Graunke, K.A. Intlekofer, M.W. Spong, Formation control and collision avoidance for multi-agent non-holonomic systems: theory and experiments. Int. J. Robot. Res. 27(1), 107–126 (2008)

    Article  Google Scholar 

  66. M.J. Mataric. Interaction and Intelligent Behavior. Ph.D. thesis, Massachusetts Institute of Technology (1994)

    Google Scholar 

  67. T.G. McGee, J. Karl Hedrick, Guaranteed strategies to search for mobile evaders in the plane, in Proceedings of the 2006 American Control Conference (2006), pp. 14–16

    Google Scholar 

  68. P.M. Morse, G.E. Kimball, Methods of Operations Research (MIT Press, Wiley, New York, 1951)

    Google Scholar 

  69. R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. W. Pan, Y. Altshuler, A. Pentland, Decoding social influence and the wisdom of the crowd in financial trading network, in 2012 International Conference on Privacy, Security, Risk and Trust (PASSAT), and 2012 International Confernece on Social Computing (SocialCom) (IEEE, 2012), pp. 203–209

    Google Scholar 

  71. L.E. Parker, C. Touzet, Multi-robot learning in a cooperative observation task. Distrib. Auton. Robot. Syst. 4, 391–401 (2000)

    Google Scholar 

  72. M. Pfingsthorn, B. Slamet, A. Visser, A scalable hybrid multi-robot slam method for highly detailed maps, RoboCup 2007: Robot Soccer World Cup XI, vol. 5001, Lecture Notes in Computer Science (Springer, Berlin, 2008), pp. 457–464

    Chapter  Google Scholar 

  73. S. Premvuti, S. Yuta, Consideration on the cooperation of multiple autonomous mobile robots, in Proceedings of the IEEE International Workshop of Intelligent Robots and Systems (1990), pp. 59–63

    Google Scholar 

  74. R. Puzis, Y. Altshuler, Y. Elovici, S. Bekhor, Y. Shiftan, A.S. Pentland, Augmented betweenness centrality for environmentally-aware traffic monitoring in transportation networks

    Google Scholar 

  75. M. Rehak, M. Pechoucek, P. Celeda, V. Krmicek, M. Grill, K. Bartos, Multi-agent approach to network intrusion detection, in AAMAS ’08: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2008) pp. 1695–1696

    Google Scholar 

  76. I. Rekleitis, V. Lee-Shuey, A. Peng Newz, H. Choset, Limited communication, multi-robot team based coverage, in IEEE International Conference on Robotics and Automation (2004)

    Google Scholar 

  77. I.M. Rekleitis, G. Dudek, E. Milios, Experiments in free-space triangulation using cooperative localization, in IEEE/RSJ/GI International Conference on Intelligent Robots and Systems (IROS) (2003)

    Google Scholar 

  78. S. Sariel, T. Balch, Real time auction based allocation of tasks for multi-robot exploration problem in dynamic environments, in Proceedings of the AAAI-05 Workshop on Integrating Planning into Scheduling (2005), pp. 27–33

    Google Scholar 

  79. R. Sawhney, K.M. Krishna, K. Srinathan, M. Mohan, On reduced time fault tolerant paths for multiple uavs covering a hostile terrain, in AAMAS ’08: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2008) pp. 1171–1174

    Google Scholar 

  80. J. Svennebring, S. Koenig, Building terrain-covering ant robots: a feasibility study. Auton. Robots 16(3), 313–332 (2004)

    Article  Google Scholar 

  81. B. Szymanski, S. Koenig, The complexity of node counting on undirected graphs (Technical Report, Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY, 1998)

    Google Scholar 

  82. A. Thorndike, Summary of antisubmarine warfare operations in world war ii. Summary report, NDRC Summary Report (1946)

    Google Scholar 

  83. B.T. Sebastian, Efficient exploration in reinforcement learning — technical report cmu-cs-92-102. Technical report, Carnegie Mellon University (1992)

    Google Scholar 

  84. P. Vincent, I. Rubin, A framework and analysis for cooperative search using uav swarms, in ACM Simposium on Applied Computing (2004)

    Google Scholar 

  85. I.A. Wagner, Y. Altshuler, V. Yanovski, A.M. Bruckstein, Cooperative cleaners: a study in ant robotics. Int. J. Robot. Res. (IJRR) 27(1), 127–151 (2008)

    Article  Google Scholar 

  86. I.A. Wagner, A.M. Bruckstein, From ants to a(ge)nts: a special issue on ant robotics. Ann. Math. Artif. Intell. Special Issue on Ant Robot. 31(1–4), 1–6 (2001)

    Google Scholar 

  87. I.A. Wagner, M. Lindenbaum, A.M. Bruckstein, Efficiently searching a graph by a smell-oriented vertex process. Ann. Math. Artif. Intell. 24, 211–223 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  88. H. Work, E. Chown, T. Hermans, J. Butterfield, Robust team-play in highly uncertain environments, in AAMAS ’08: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2008), pp. 1199–1202

    Google Scholar 

  89. A. Yamashita, M. Fukuchi, J. Ota, T. Arai, H. Asama, Motion planning for cooperative transportation of a large object by multiple mobile robots in a 3d environment, in Proceedings of IEEE International Conference on Robotics and Automation (2000), pp. 3144–3151

    Google Scholar 

  90. X. Zheng, S. Koenig, Robot coverage of terrain with non-uniform traversability, in Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS) (2007), pp. 3757–3764

    Google Scholar 

  91. X. Zheng, S. Koenig, Reaction functions for task allocation to cooperative agents, in Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems (2008), pp. 559–566

    Google Scholar 

  92. X. Zheng, S. Jain, S. Koenig, D. Kempe, Multi-robot forest coverage, in Proceedings of IROS (press, 2005), pp. 3852–3857

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaniv Altshuler .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Altshuler, Y., Pentland, A., Bruckstein, A.M. (2018). The Search Complexity of Collaborative Swarms in Expanding \(\mathbf{Z}^{2}\) Grid Regions. In: Swarms and Network Intelligence in Search. Studies in Computational Intelligence, vol 729. Springer, Cham. https://doi.org/10.1007/978-3-319-63604-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63604-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63602-3

  • Online ISBN: 978-3-319-63604-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics