Skip to main content

Data Fusion Through Bayesian Methods for Flood Monitoring from Remotely Sensed Data

  • Chapter
  • First Online:
Flood Monitoring through Remote Sensing

Part of the book series: Springer Remote Sensing/Photogrammetry ((SPRINGERREMO))

  • 1334 Accesses

Abstract

Producing high-precision flood maps requires integrating and correctly classifying information coming from heterogeneous sources. Methods to perform such integration have to rely on different knowledge bases. A useful tool to perform this task consists in the use of Bayesian methods to assign probabilities to areas being subject to flood phenomena, fusing a priori information and modeling with data coming from radar or optical imagery. In this chapter we review the use of Bayesian networks, an elegant framework to cast probabilistic descriptions of complex systems, applied to flood monitoring from multi-sensor, multi-temporal remotely sensed and ancillary data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The contributing area, or drainage area, of a given river point is the sum of the hydrologically connected area upslope that point. A contributing area can be generally calculated for every landscape point by iteratively summing unitary “parcels” or pixels upslope a given point (see, e.g., [2]).

References

  1. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, Cambridge (2012). doi: https://doi.org/10.1017/CBO9780511804779

  2. Beven, K.J., Kirkby, M.J.: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 24(1), 43–69 (1979). doi: https://doi.org/10.1080/02626667909491834

  3. Bishop, C.M.C.: Neural Networks for Pattern Recognition. Clarendon Press/Oxford University Press, Oxford/New York (1995)

    Google Scholar 

  4. Boenzi, F., Caldara, M., Capolongo, D., Dellino, P., Piccarreta, M., Simone, O.: Late Pleistocene-Holocene landscape evolution in Fossa Bradanica, Basilicata (Southern Italy). Geomorphology 102(3–4), 297–306 (2008). doi: https://doi.org/10.1016/j.geomorph.2008.03.013

  5. Bovolo, F., Bruzzone, L.: The time variable in data fusion: a change detection perspective. IEEE Geosci. Remote Sens. Mag. 3(3), 8–26 (2015). doi: https://doi.org/10.1109/MGRS.2015.2443494

  6. Bracaglia, M., Ferrazzoli, P., Guerriero, L.: A fully polarimetric multiple scattering model for crops. Remote Sens. Environ. 54(3), 170–179 (1995). doi: https://doi.org/10.1016/0034–4257(95)00151–4

  7. D’Addabbo, A., Refice, A., Pasquariello, G., Bovenga, F., Chiaradia, M.T., Nitti, D.O.: A Bayesian network for flood detection. In: 2014 IEEE Geoscience and Remote Sensing Symposium, pp. 3594–3597. IEEE (2014). doi: https://doi.org/10.1109/IGARSS.2014.6947260

  8. D’Addabbo, A., Refice, A., Pasquariello, G., Lovergine, F.P., Capolongo, D., Manfreda, S.: A Bayesian network for flood detection combining SAR imagery and ancillary data. IEEE Trans. Geosci. Remote Sens. 54(6), 3612–3625 (2016). doi: https://doi.org/10.1109/TGRS.2016.2520487

  9. Dasarathy, B.: Information Fusion: what, where, why, when, and how? Inf. Fusion 2(2), 75–76 (2001). doi: https://doi.org/10.1016/S1566–2535(01)00032-X

  10. Deledalle, C.A., Duval, V., Salmon, J.: Non-local methods with shape-adaptive patches (NLM-SAP). J. Math. Imaging Vision 43(2), 103–120 (2012). doi: https://doi.org/10.1007/s10851–011-0294-y

  11. Fiorentino, M., Manfreda, S., Iacobellis, V.: Peak runoff contributing area as hydrological signature of the probability distribution of floods. Adv. Water Resour. 30(10), 2123–2134 (2007). doi: https://doi.org/10.1016/j.advwatres.2006.11.017

  12. Frey, D., Butenuth, M., Straub, D.: Probabilistic graphical models for flood state detection of roads combining imagery and DEM. IEEE Geosci. Remote Sens. Lett. 9(6), 1051–1055 (2012). doi: https://doi.org/10.1109/LGRS.2012.2188881

  13. Gamba, P., Dell’Acqua, F., Dasarathy, B.V.: Urban remote sensing using multiple data sets: past, present, and future. Inf. Fusion 6(4), 319–326 (2005). doi: https://doi.org/10.1016/j.inffus.2005.02.007

  14. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    Google Scholar 

  15. Gomarasca, M.A.: Basics of Geomatics. Springer, Dordrecht (2009). doi: https://doi.org/10.1007/978-1-4020-9014-1.

  16. Grêt-Regamey, A., Straub, D.: Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS. Nat. Hazards Earth Syst. Sci. 6(6), 911–926 (2006). doi: https://doi.org/10.5194/nhess-6-911-2006

  17. Kampes, B.M., Hanssen, R.F., Perski, Z.: Radar interferometry with public domain tools. In: European Space Agency, (Special Publication) ESA SP, 550, pp. 59–68 (2004)

    Google Scholar 

  18. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    Google Scholar 

  19. Lee, J., Schuler, D., Lang, R., Ranson, K.: K-distribution for multi-look processed polarimetric SAR imagery. In: Proceedings of IGARSS ’94–1994 IEEE International Geoscience and Remote Sensing Symposium, vol. 4, pp. 2179–2181. IEEE (1994). doi: https://doi.org/10.1109/IGARSS.1994.399685

  20. Manfreda, S., Samela, C., Gioia, A., Consoli, G.G., Iacobellis, V., Giuzio, L., Cantisani, A., Sole, A.: Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Nat. Hazards 79(2), 735–754 (2015). doi: https://doi.org/10.1007/s11069-015-1869-5

  21. Martinis, S., Kersten, J., Twele, A.: A fully automated TerraSAR-X based flood service. ISPRS J. Photogramm. Remote Sens. 104, 203–212 (2015). doi: https://doi.org/10.1016/j.isprsjprs.2014.07.014

  22. Nitti, D.O., Hanssen, R.F., Refice, A., Bovenga, F., Nutricato, R.: Impact of DEM-assisted coregistration on high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 49(3), 1127–1143 (2011). doi: https://doi.org/10.1109/TGRS.2010.2074204

  23. Papakosta, P., Straub, D.: A Bayesian network approach to assessing wildfire consequences. In: Proceedings ICOSSAR 2013, Straub 2005, pp. 3131–3138 (2013)

    Google Scholar 

  24. Piccarreta, M., Pasini, A., Capolongo, D., Lazzari, M.: Changes in daily precipitation extremes in the Mediterranean from 1951 to 2010: The Basilicata region, Southern Italy. Int. J. Climatol. 33(15), 3229–3248 (2013). doi: https://doi.org/10.1002/joc.3670

  25. Pierdicca, N., Pulvirenti, L., Chini, M., Guerriero, L., Candela, L.: Observing floods from space: experience gained from COSMO-SkyMed observations. Acta Astronaut. 84, 122–133 (2013). doi: https://doi.org/10.1016/j.actaastro.2012.10.034

  26. Pulvirenti, L., Chini, M., Pierdicca, N., Guerriero, L., Ferrazzoli, P.: Flood monitoring using multi-temporal COSMO-SkyMed data: image segmentation and signature interpretation. Remote Sens. Environ. 115(4), 990–1002 (2011). doi: https://doi.org/10.1016/j.rse.2010.12.002

  27. Qin, D., Jianwen, M., Yun, O.Y.: Remote sensing data change detection based on the CI test of Bayesian networks. Comput. Geosci. 32(2), 195–202 (2006). doi: https://doi.org/10.1016/j.cageo.2005.06.012

  28. RapidEye, A.G.: Satellite imagery product specifications. Tech. Rep. (2015). http://www.flyby.it/images/brochure/rapideye/eng/re_product_specifications_eng.pdf

    Google Scholar 

  29. Refice, A., Belmonte, A., Bovenga, F., Pasquariello, G., Nutricato, R.: On the interpolation of sparse-grid InSAR data without need of phase unwrapping. Eur. J. Remote Sens. 46(1), 807–821 (2013). doi: https://doi.org/10.5721/EuJRS20134648

  30. Refice, A., Capolongo, D., Pasquariello, G., D’Addabbo, A., Bovenga, F., Nutricato, R., Lovergine, F.P., Pietranera, L.: SAR and InSAR for flood monitoring: examples with COSMO-SkyMed data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(7), 2711–2722 (2014). doi: https://doi.org/10.1109/JSTARS.2014.2305165

  31. Rignot, E.J.M., van Zyl, J.J.: Change detection techniques for ERS-1 SAR Data. IEEE Trans. Geosci. Remote Sens. 31(4), 896–906 (1993). doi: https://doi.org/10.1109/36.239913

  32. Samela, C., Troy, T.J., Manfreda, S.: Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Adv. Water Resour. 102, 13–28 (2017). doi: https://doi.org/10.1016/j.advwatres.2017.01.007

  33. Straub, D.: Natural hazards risk assessment using Bayesian networks. In: ICOSSAR, pp. 2509–2516

    Google Scholar 

  34. Touzi, R., Lopes, A.: Statistics of the stokes parameters and of the complex coherence parameters in one-look and multilook speckle fields. IEEE Trans. Geosci. Remote Sens. 34(2), 519–531 (1996). doi: https://doi.org/10.1109/36.485128

  35. Vogel, K., Riggelsen, C., Korup, O., Scherbaum, F.: Bayesian network learning for natural hazard analyses. Nat. Hazards Earth Syst. Sci. 14(9), 2605–2626 (2014). doi: https://doi.org/10.5194/nhess-14-2605-2014

  36. Zebker, H.A., Villasenor, J.: Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 30(5), 950–959 (1992). doi: https://doi.org/10.1109/36.175330

Download references

Acknowledgements

COSMO-SkyMed images are courtesy of Italian Space Agency. Ing. L. Candela, of the Italian Space Agency (ASI), is kindly acknowledged for support in data acquisition. InSAR processing was performed by Dr. D. O. Nitti of GAP s.r.l.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annarita D’Addabbo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Addabbo, A., Refice, A., Capolongo, D., Pasquariello, G., Manfreda, S. (2018). Data Fusion Through Bayesian Methods for Flood Monitoring from Remotely Sensed Data. In: Refice, A., D'Addabbo, A., Capolongo, D. (eds) Flood Monitoring through Remote Sensing. Springer Remote Sensing/Photogrammetry. Springer, Cham. https://doi.org/10.1007/978-3-319-63959-8_8

Download citation

Publish with us

Policies and ethics