Skip to main content

Cytogenetics of Lymphomas

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Cytogenetic analysis relies on the production of banded metaphase chromosomes for analysis, but chronic lymphoid malignancies have proved notoriously difficult to karyotype as they have extremely variable rates of growth in culture. The highest number of proliferating cells has been identified in diffuse large B-cell lymphomas (DLBCL) and Burkitt lymphomas (BL), whilst follicular lymphomas (FL) and lymphoplasmacytic lymphomas show decreased proliferation when compared with normal mature B lymphocytes. Therefore, it has been necessary to use a range of tests to determine the genetics of lymphomas, including fluorescence in situ hybridisation (FISH) applied to interphase cells (i-FISH) and metaphase spreads, multicoloured FISH, chromosome comparative genomic hybridisation (CGH) and array-based strategies: array CGH (aCGH) and single nucleotide polymorphism array (SNP-A) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Quijano S, Lopez A, Rasillo A, Barrena S, Luz Sanchez M, Flores J, et al. Association between the proliferative rate of neoplastic B cells, their maturation stage, and underlying cytogenetic abnormalities in B-cell chronic lymphoproliferative disorders: analysis of a series of 432 patients. Blood. 2008;111(10):5130–41.

    Article  CAS  PubMed  Google Scholar 

  2. Hernandez JM, Mecucci C, Criel A, Meeus P, Michaux I, Van Hoof A, et al. Cytogenetic analysis of B cell chronic lymphoid leukemias classified according to morphologic and immunophenotypic (FAB) criteria. Leukemia. 1995;9(12):2140–6.

    CAS  PubMed  Google Scholar 

  3. Matutes E, Oscier D, Garcia-Marco J, Ellis J, Copplestone A, Gillingham R, et al. Trisomy 12 defines a group of CLL with atypical morphology: correlation between cytogenetic, clinical and laboratory features in 544 patients. Br J Haematol. 1996;92(2):382–8.

    Article  CAS  PubMed  Google Scholar 

  4. Dicker F, Schnittger S, Haferlach T, Kern W, Schoch C. Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: a study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood. 2006;108(9):3152–60.

    Article  CAS  PubMed  Google Scholar 

  5. Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 2007;21(12):2442–51.

    Article  CAS  PubMed  Google Scholar 

  6. Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.

    Article  PubMed  Google Scholar 

  7. Van Dyke DL, Werner L, Rassenti LZ, Neuberg D, Ghia E, Heerema NA, et al. The Dohner fluorescence in situ hybridization prognostic classification of chronic lymphocytic leukaemia (CLL): the CLL research consortium experience. Br J Haematol. 2016;173(1):105–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Guarini A, Gaidano G, Mauro FR, Capello D, Mancini F, De Propris MS, et al. Chronic lymphocytic leukemia patients with highly stable and indolent disease show distinctive phenotypic and genotypic features. Blood. 2003;102(3):1035–41.

    Article  CAS  PubMed  Google Scholar 

  9. Krober A, Seiler T, Benner A, Bullinger L, Bruckle E, Lichter P, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100(4):1410–6.

    CAS  PubMed  Google Scholar 

  10. Oscier DG, Gardiner AC, Mould SJ, Glide S, Davis ZA, Ibbotson RE, et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood. 2002;100(4):1177–84.

    CAS  PubMed  Google Scholar 

  11. Davids MS, Vartanov A, Werner L, Neuberg D, Dal Cin P, Brown JR. Controversial fluorescence in situ hybridization cytogenetic abnormalities in chronic lymphocytic leukaemia: new insights from a large cohort. Br J Haematol. 2015;170(5):694–703.

    Article  CAS  PubMed  Google Scholar 

  12. Lozano-Santos C, Garcia-Vela JA, Perez-Sanz N, Nova-Gurumeta S, Fernandez-Cuevas B, Gomez-Lozano N, et al. Biallelic ATM alterations detected at diagnosis identify a subset of treatment-naive chronic lymphocytic leukemia patients with reduced overall survival similar to patients with p53 deletion. Leuk Lymphoma. 2017;58(4):859–65.

    Article  CAS  PubMed  Google Scholar 

  13. Dicker F, Herholz H, Schnittger S, Nakao A, Patten N, Wu L, et al. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia. 2009;23(1):117–24.

    Article  CAS  PubMed  Google Scholar 

  14. Rudenko HC, Else M, Dearden C, Brito-Babapulle V, Jones C, Dexter T, et al. Characterising the TP53-deleted subgroup of chronic lymphocytic leukemia: an analysis of additional cytogenetic abnormalities detected by interphase fluorescence in situ hybridisation and array-based comparative genomic hybridisation. Leuk Lymphoma. 2008;49(10):1879–86.

    Article  CAS  PubMed  Google Scholar 

  15. Catovsky D, Richards S, Matutes E, Oscier D, Dyer MJ, Bezares RF, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 trial): a randomised controlled trial. Lancet. 2007;370(9583):230–9.

    Article  CAS  PubMed  Google Scholar 

  16. Tam CS, Shanafelt TD, Wierda WG, Abruzzo LV, Van Dyke DL, O’Brien S, et al. De novo deletion 17p13.1 chronic lymphocytic leukemia shows significant clinical heterogeneity: the M. D. Anderson and Mayo Clinic experience. Blood. 2009;114(5):957–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dohner H, Fischer K, Bentz M, Hansen K, Benner A, Cabot G, et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood. 1995;85(6):1580–9.

    CAS  PubMed  Google Scholar 

  18. Zenz T, Habe S, Denzel T, Winkler D, Dohner H, Stilgenbauer S. How little is too much? p53 inactivation: from laboratory cutoff to biological basis of chemotherapy resistance. Leukemia. 2008;22(12):2257–8.

    Article  CAS  PubMed  Google Scholar 

  19. Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A, Fama R, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood. 2014;123(14):2139–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chena C, Avalos JS, Bezares RF, Arrossagaray G, Turdó K, Bistmans A, et al. Biallelic deletion 13q14.3 in patients with chronic lymphocytic leukemia: cytogenetic, FISH and clinical studies. Eur J Haematol. 2008;81(2):94–9.

    Article  PubMed  Google Scholar 

  22. Van Dyke DL, Shanafelt TD, Call TG, Zent CS, Smoley SA, Rabe KG, et al. A comprehensive evaluation of the prognostic significance of 13q deletions in patients with B-chronic lymphocytic leukaemia. Br J Haematol. 2010;148(4):544–50.

    Article  PubMed  Google Scholar 

  23. Garg R, Wierda W, Ferrajoli A, Abruzzo L, Pierce S, Lerner S, et al. The prognostic difference of monoallelic versus biallelic deletion of 13q in chronic lymphocytic leukemia. Cancer. 2012;118(14):3531–7.

    Article  CAS  PubMed  Google Scholar 

  24. Huang SJ, Gillan TL, Gerrie AS, Hrynchak M, Karsan A, Ramadan K, et al. Influence of clone and deletion size on outcome in chronic lymphocytic leukemia patients with an isolated deletion 13q in a population-based analysis in British Columbia, Canada. Genes Chromosom Cancer. 2016;55(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  25. Dal Bo M, Rossi FM, Rossi D, Deambrogi C, Bertoni F, Del Giudice I, et al. 13q14 deletion size and number of deleted cells both influence prognosis in chronic lymphocytic leukemia. Genes Chromosom Cancer. 2011;50(8):633–43.

    Article  CAS  PubMed  Google Scholar 

  26. Ouillette P, Erba H, Kujawski L, Kaminski M, Shedden K, Malek SN. Integrated genomic profiling of chronic lymphocytic leukemia identifies subtypes of deletion 13q14. Cancer Res. 2008;68(4):1012–21.

    Article  CAS  PubMed  Google Scholar 

  27. Ouillette P, Collins R, Shakhan S, Li J, Li C, Shedden K, et al. The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia. Clin Cancer Res. 2011;17(21):6778–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parker H, Rose-Zerilli MJ, Parker A, Chaplin T, Wade R, Gardiner A, et al. 13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia. Leukemia. 2011;25(3):489–97.

    Article  CAS  PubMed  Google Scholar 

  29. Mian M, Rinaldi A, Mensah AA, Rossi D, Ladetto M, Forconi F, et al. Del(13q14.3) length matters: an integrated analysis of genomic, fluorescence in situ hybridization and clinical data in 169 chronic lymphocytic leukaemia patients with 13q deletion alone or a normal karyotype. Hematol Oncol. 2012;30(1):46–9.

    Article  CAS  PubMed  Google Scholar 

  30. Mayr C, Speicher MR, Kofler DM, Buhmann R, Strehl J, Busch R, et al. Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood. 2006;107(2):742–51.

    Article  CAS  PubMed  Google Scholar 

  31. Baliakas P, Iskas M, Gardiner A, Davis Z, Plevova K, Nguyen-Khac F, et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol. 2014;89(3):249–55.

    Article  CAS  PubMed  Google Scholar 

  32. Haferlach C, Dicker F, Weiss T, Schnittger S, Beck C, Grote-Metke A, et al. Toward a comprehensive prognostic scoring system in chronic lymphocytic leukemia based on a combination of genetic parameters. Genes Chromosom Cancer. 2010;49(9):851–9.

    CAS  PubMed  Google Scholar 

  33. Rigolin GM, Saccenti E, Bassi C, Lupini L, Quaglia FM, Cavallari M, et al. Extensive next-generation sequencing analysis in chronic lymphocytic leukemia at diagnosis: clinical and biological correlations. J Hematol Oncol. 2016;9(1):88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Van Den Neste E, Robin V, Francart J, Hagemeijer A, Stul M, Vandenberghe P, et al. Chromosomal translocations independently predict treatment failure, treatment-free survival and overall survival in B-cell chronic lymphocytic leukemia patients treated with cladribine. Leukemia. 2007;21(8):1715–22.

    Article  CAS  Google Scholar 

  35. Woyach JA, Heerema NA, Zhao J, McFaddin A, Stark A, Lin TS, et al. Dic(17;18)(p11.2;p11.2) is a recurring abnormality in chronic lymphocytic leukaemia associated with aggressive disease. Br J Haematol. 2010;148(5):754–9.

    Article  PubMed  Google Scholar 

  36. Cavazzini F, Hernandez JA, Gozzetti A, Russo Rossi A, De Angeli C, Tiseo R, et al. Chromosome 14q32 translocations involving the immunoglobulin heavy chain locus in chronic lymphocytic leukaemia identify a disease subset with poor prognosis. Br J Haematol. 2008;142(4):529–37.

    Article  PubMed  Google Scholar 

  37. Quintero-Rivera F, Nooraie F, Rao PN. Frequency of 5’IGH deletions in B-cell chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2009;190(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  38. De Braekeleer M, Tous C, Gueganic N, Le Bris M-J, Basinko A, Morel F, et al. Immunoglobulin gene translocations in chronic lymphocytic leukemia: a report of 35 patients and review of the literature. Mol Clin Oncol. 2016;4(5):682–94.

    Article  Google Scholar 

  39. Put N, Meeus P, Chatelain B, Rack K, Boeckx N, Nollet F, et al. Translocation t(14;18) is not associated with inferior outcome in chronic lymphocytic leukemia. Leukemia. 2009;23(6):1201–4.

    Article  CAS  PubMed  Google Scholar 

  40. Baseggio L, Geay MO, Gazzo S, Berger F, Traverse-Glehen A, Ffrench M, et al. In non-follicular lymphoproliferative disorders, IGH/BCL2-fusion is not restricted to chronic lymphocytic leukaemia. Br J Haematol. 2012;158(4):489–98.

    Article  CAS  PubMed  Google Scholar 

  41. Nguyen-Khac F, Chapiro E, Lesty C, Grelier A, Luquet I, Radford-Weiss I, et al. Specific chromosomal IG translocations have different prognoses in chronic lymphocytic leukemia. Am J Blood Res. 2011;1(1):13–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Michaux L, Dierlamm J, Wlodarska I, Bours V, Van den Berghe H, Hagemeijer A. T(14;19)/BCL3 rearrangements in lymphoproliferative disorders: a review of 23 cases. Cancer Genet Cytogenet. 1997;94(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  43. Chapiro E, Radford-Weiss I, Bastard C, Luquet I, Lefebvre C, Callet-Bauchu E, et al. The most frequent t(14;19)(q32;q13)-positive B-cell malignancy corresponds to an aggressive subgroup of atypical chronic lymphocytic leukemia. Leukemia. 2008;22(11):2123–7.

    Article  CAS  PubMed  Google Scholar 

  44. Huh YO, Schweighofer CD, Ketterling RP, Knudson RA, Vega F, Kim JE, et al. Chronic lymphocytic leukemia with t(14;19)(q32;q13) is characterized by atypical morphologic and immunophenotypic features and distinctive genetic features. Am J Clin Pathol. 2011;135(5):686–96.

    Article  PubMed  Google Scholar 

  45. Yin CC, Lin KI-C, Ketterling RP, Knudson RA, Medeiros LJ, Barron LL, et al. Chronic lymphocytic leukemia with t(2;14)(p16;q32) involves the BCL11A and IgH genes and is associated with atypical morphologic features and unmutated IgVH genes. Am J Clin Pathol. 2009;131(5):663–70.

    Article  PubMed  Google Scholar 

  46. Huh YO, Lin KI-C, Vega F, Schlette E, Yin CC, Keating MJ, et al. MYC translocation in chronic lymphocytic leukaemia is associated with increased prolymphocytes and a poor prognosis. Br J Haematol. 2008;142(1):36–44.

    Article  PubMed  Google Scholar 

  47. Put N, Van Roosbroeck K, Konings P, Meeus P, Brusselmans C, Rack K, et al. Chronic lymphocytic leukemia and prolymphocytic leukemia with MYC translocations: a subgroup with an aggressive disease course. Ann Hematol. 2012;91(6):863–73.

    Article  CAS  PubMed  Google Scholar 

  48. Chen D, Law ME, Theis JD, Gamez JD, Caron LB, Vrana JA, et al. Clinicopathologic features of CDK6 translocation-associated B-cell lymphoproliferative disorders. Am J Surg Pathol. 2009;33(5):720–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Douet-Guilbert N, Tous C, Le Flahec G, Bovo C, Le Bris MJ, Basinko A, et al. Translocation t(2;7)(p11;q21) associated with the CDK6/IGK rearrangement is a rare but recurrent abnormality in B-cell lymphoproliferative malignancies. Cancer Gene Ther. 2014;207(3):83–6.

    Article  CAS  Google Scholar 

  50. Michaux L, Wlodarska I, Rack K, Stul M, Criel A, Maerevoet M, et al. Translocation t(1;6)(p35.3;p25.2): a new recurrent aberration in “unmutated” B-CLL. Leukemia. 2005;19(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  51. Cosson A, Chapiro E, Belhouachi N, Cung HA, Keren B, Damm F, et al. 14q deletions are associated with trisomy 12, NOTCH1 mutations and unmutated IGHV genes in chronic lymphocytic leukemia and small lymphocytic lymphoma. Genes Chromosom Cancer. 2014;53(8):657–66.

    Article  CAS  PubMed  Google Scholar 

  52. Nagel I, Bug S, Tonnies H, Ammerpohl O, Richter J, Vater I, et al. Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33). Leukemia. 2009;23(11):2153–5.

    Article  CAS  PubMed  Google Scholar 

  53. Wlodarska I, Matthews C, Veyt E, Pospisilova H, Catherwood MA, Poulsen TS, et al. Telomeric IGH losses detectable by fluorescence in situ hybridization in chronic lymphocytic leukemia reflect somatic VH recombination events. J Mol Diagn. 2007;9(1):47–54.

    Google Scholar 

  54. Byrd JC, Smith L, Hackbarth ML, Flinn IW, Young D, Proffitt JH, et al. Interphase cytogenetic abnormalities in chronic lymphocytic leukemia may predict response to rituximab. Cancer Res. 2003;63(1):36–8.

    CAS  PubMed  Google Scholar 

  55. Lozanski G, Heerema NA, Flinn IW, Smith L, Harbison J, Webb J, et al. Alemtuzumab is an effective therapy for chronic lymphocytic leukemia with p53 mutations and deletions. Blood. 2004;103(9):3278–81.

    Article  CAS  PubMed  Google Scholar 

  56. Tam CS, Otero-Palacios J, Abruzzo LV, Jorgensen JL, Ferrajoli A, Wierda WG, et al. Chronic lymphocytic leukaemia CD20 expression is dependent on the genetic subtype: a study of quantitative flow cytometry and fluorescent in-situ hybridization in 510 patients. Br J Haematol. 2008;141(1):36–40.

    Article  PubMed  Google Scholar 

  57. Tsimberidou AM, Tam C, Abruzzo LV, O’Brien S, Wierda WG, Lerner S, et al. Chemoimmunotherapy may overcome the adverse prognostic significance of 11q deletion in previously untreated patients with chronic lymphocytic leukemia. Cancer. 2009;115(2):373–80.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rossi D, Terzi-di-Bergamo L, De Paoli L, Cerri M, Ghilardi G, Chiarenza A, et al. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia. Blood. 2015;126(16):1921–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thompson PA, O’Brien SM, Wierda WG, Ferrajoli A, Stingo F, Smith SC, et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2015;121(20):3612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Herling CD, Klaumunzer M, Rocha CK, Altmuller J, Thiele H, Bahlo J, et al. Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy. Blood. 2016;128(3):395–404.

    Article  CAS  PubMed  Google Scholar 

  61. Lehmann S, Ogawa S, Raynaud SD, Sanada M, Nannya Y, Ticchioni M, et al. Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia. Cancer. 2008;112(6):1296–305.

    Article  CAS  PubMed  Google Scholar 

  62. Forconi F, Rinaldi A, Kwee I, Sozzi E, Raspadori D, Rancoita PM, et al. Genome-wide DNA analysis identifies recurrent imbalances predicting outcome in chronic lymphocytic leukaemia with 17p deletion. Br J Haematol. 2008;143(4):532–6.

    PubMed  Google Scholar 

  63. Chapiro E, Leporrier N, Radford-Weiss I, Bastard C, Mossafa H, Leroux D, et al. Gain of the short arm of chromosome 2 (2p) is a frequent recurring chromosome aberration in untreated chronic lymphocytic leukemia (CLL) at advanced stages. Leuk Res. 2010;34(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  64. Kujawski L, Ouillette P, Erba H, Saddler C, Jakubowiak A, Kaminski M, et al. Genomic complexity identifies patients with aggressive chronic lymphocytic leukemia. Blood. 2008;112(5):1993–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ouillette P, Collins R, Shakhan S, Li J, Peres E, Kujawski L, et al. Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood. 2011;118(11):3051–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Edelmann J, Holzmann K, Miller F, Winkler D, Buhler A, Zenz T, et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood. 2012;120(24):4783–94.

    Article  CAS  PubMed  Google Scholar 

  67. Schweighofer CD, Coombes KR, Majewski T, Barron LL, Lerner S, Sargent RL, et al. Genomic variation by whole-genome SNP mapping arrays predicts time-to-event outcome in patients with chronic lymphocytic leukemia: a comparison of CLL and HapMap genotypes. J Mol Diagn. 2013;15(2):196–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gunnarsson R, Isaksson A, Mansouri M, Goransson H, Jansson M, Cahill N, et al. Large but not small copy-number alterations correlate to high-risk genomic aberrations and survival in chronic lymphocytic leukemia: a high-resolution genomic screening of newly diagnosed patients. Leukemia. 2010;24(1):211–5.

    Article  CAS  PubMed  Google Scholar 

  69. Ferreira BI, Garcia JF, Suela J, Mollejo M, Camacho FI, Carro A, et al. Comparative genome profiling across subtypes of low-grade B-cell lymphoma identifies type-specific and common aberrations that target genes with a role in B-cell neoplasia. Haematologica. 2008;93(5):670–9.

    Article  CAS  PubMed  Google Scholar 

  70. Shanafelt TD, Rabe KG, Kay NE, Zent CS, Jelinek DF, Reinalda MS, et al. Age at diagnosis and the utility of prognostic testing in patients with chronic lymphocytic leukemia. Cancer. 2010;116(20):4777–87.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ruchlemer R, Parry-Jones N, Brito-Babapulle V, Attolico I, Wotherspoon AC, Matutes E, et al. B-prolymphocytic leukaemia with t(11;14) revisited: a splenomegalic form of mantle cell lymphoma evolving with leukaemia. Br J Haematol. 2004;125(3):330–6.

    Article  PubMed  Google Scholar 

  72. Rinaldi A, Mian M, Chigrinova E, Arcaini L, Bhagat G, Novak U, et al. Genome-wide DNA profiling of marginal zone lymphomas identifies subtype-specific lesions with an impact on the clinical outcome. Blood. 2011;117(5):1595–604.

    Article  CAS  PubMed  Google Scholar 

  73. Hoehn D, Miranda RN, Kanagal-Shamanna R, Lin P, Medeiros LJ. Splenic B-cell lymphomas with more than 55% prolymphocytes in blood: evidence for prolymphocytoid transformation. Hum Pathol. 2012;43(11):1828–38.

    Article  PubMed  Google Scholar 

  74. Lens D, Matutes E, Catovsky D, Coignet LJ. Frequent deletions at 11q23 and 13q14 in B cell prolymphocytic leukemia (B-PLL). Leukemia. 2000;14(3):427–30.

    Article  CAS  PubMed  Google Scholar 

  75. Del Giudice I, Davis Z, Matutes E, Osuji N, Parry-Jones N, Morilla A, et al. IgVH genes mutation and usage, ZAP-70 and CD38 expression provide new insights on B-cell prolymphocytic leukemia (B-PLL). Leukemia. 2006;20(7):1231–7.

    Article  PubMed  CAS  Google Scholar 

  76. Merchant S, Schlette E, Sanger W, Lai R, Medeiros LJ. Mature B-cell leukemias with more than 55% prolymphocytes: report of 2 cases with Burkitt lymphoma-type chromosomal translocations involving c-myc. Arch Pathol Lab Med. 2003;127(3):305–9.

    PubMed  Google Scholar 

  77. Kuriakose P, Perveen N, Maeda K, Wiktor A, Van Dyke DL. Translocation (8;14)(q24;q32) as the sole cytogenetic abnormality in B-cell prolymphocytic leukemia. Cancer Genet Cytogenet. 2004;150(2):156–8.

    Article  CAS  PubMed  Google Scholar 

  78. Crisostomo RH, Fernandez JA, Caceres W. Complex karyotype including chromosomal translocation (8;14) (q24;q32) in one case with B-cell prolymphocytic leukemia. Leuk Res. 2007;31(5):699–701.

    Article  CAS  PubMed  Google Scholar 

  79. Flatley E, Chen AI, Zhao X, Jaffe ES, Dunlap JB, Pittaluga S, et al. Aberrations of MYC are a common event in B-cell prolymphocytic leukemia. Am J Clin Pathol. 2014;142(3):347–54.

    Article  PubMed  Google Scholar 

  80. Del Giudice I, Osuji N, Dexter T, Brito-Babapulle V, Parry-Jones N, Chiaretti S, et al. B-cell prolymphocytic leukemia and chronic lymphocytic leukemia have distinctive gene expression signatures. Leukemia. 2009;23(11):2160–7.

    Article  PubMed  Google Scholar 

  81. Bardi A, Cavazzini F, Rigolin GM, Tammiso E, Volta E, Pezzolo E, et al. Employment of oligodeoxynucleotide plus interleukin-2 improves cytogenetic analysis in splenic marginal zone lymphoma. J Biomed Biotechnol. 2011;2011:691493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Baro C, Salido M, Espinet B, Astier L, Domingo A, Granada I, et al. New chromosomal alterations in a series of 23 splenic marginal zone lymphoma patients revealed by spectral karyotyping (SKY). Leuk Res. 2008;32(5):727–36.

    Article  CAS  PubMed  Google Scholar 

  83. Matutes E, Oscier D, Montalban C, Berger F, Callet-Bauchu E, Dogan A, et al. Splenic marginal zone lymphoma proposals for a revision of diagnostic, staging and therapeutic criteria. Leukemia. 2008;22(3):487–95.

    Article  CAS  PubMed  Google Scholar 

  84. Novara F, Arcaini L, Merli M, Passamonti F, Zibellini S, Rizzi S, et al. High-resolution genome-wide array comparative genomic hybridization in splenic marginal zone B-cell lymphoma. Hum Pathol. 2009;40(11):1628–37.

    Article  CAS  PubMed  Google Scholar 

  85. Braggio E, Dogan A, Keats JJ, Chng WJ, Huang G, Matthews JM, et al. Genomic analysis of marginal zone and lymphoplasmacytic lymphomas identified common and disease-specific abnormalities. Mod Pathol. 2012;25(5):651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fresquet V, Robles EF, Parker A, Martinez-Useros J, Mena M, Malumbres R, et al. High-throughput sequencing analysis of the chromosome 7q32 deletion reveals IRF5 as a potential tumour suppressor in splenic marginal-zone lymphoma. Br J Haematol. 2012;158(6):712–26.

    Article  CAS  PubMed  Google Scholar 

  87. Watkins AJ, Huang Y, Ye H, Chanudet E, Johnson N, Hamoudi R, et al. Splenic marginal zone lymphoma: characterization of 7q deletion and its value in diagnosis. J Pathol. 2010;220(4):461–74.

    CAS  PubMed  Google Scholar 

  88. Watkins AJ, Hamoudi RA, Zeng N, Yan Q, Huang Y, Liu H, et al. An integrated genomic and expression analysis of 7q deletion in splenic marginal zone lymphoma. PLoS One. 2012;7(9):e44997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Clipson A, Wang M, de Leval L, Ashton-Key M, Wotherspoon A, Vassiliou G, et al. KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype. Leukemia. 2015;29(5):1177–85.

    Article  CAS  PubMed  Google Scholar 

  90. Arribas AJ, Rinaldi A, Mensah AA, Kwee I, Cascione L, Robles EF, et al. DNA methylation profiling identifies two splenic marginal zone lymphoma subgroups with different clinical and genetic features. Blood. 2015;125(12):1922–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chacon JI, Mollejo M, Munoz E, Algara P, Mateo M, Lopez L, et al. Splenic marginal zone lymphoma: clinical characteristics and prognostic factors in a series of 60 patients. Blood. 2002;100(5):1648–54.

    CAS  PubMed  Google Scholar 

  92. Salido M, Baro C, Oscier D, Stamatopoulos K, Dierlamm J, Matutes E, et al. Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the splenic B-cell lymphoma group. Blood. 2010;116(9):1479–88.

    Article  CAS  PubMed  Google Scholar 

  93. Remstein ED, Law M, Mollejo M, Piris MA, Kurtin PJ, Dogan A. The prevalence of IG translocations and 7q32 deletions in splenic marginal zone lymphoma. Leukemia. 2008;22(6):1268–72.

    Article  CAS  PubMed  Google Scholar 

  94. Kluin-Nelemans HC, Beverstock GC, Mollevanger P, Wessels HW, Hoogendoorn E, Willemze R, et al. Proliferation and cytogenetic analysis of hairy cell leukemia upon stimulation via the CD40 antigen. Blood. 1994;84(9):3134–41.

    CAS  PubMed  Google Scholar 

  95. Dierlamm J, Stefanova M, Wlodarska I, Michaux L, Hinz K, Penas EM, et al. Chromosomal gains and losses are uncommon in hairy cell leukemia: a study based on comparative genomic hybridization and interphase fluorescence in situ hybridization. Cancer Genet Cytogenet. 2001;128(2):164–7.

    Article  CAS  PubMed  Google Scholar 

  96. Sambani C, Trafalis DT, Mitsoulis-Mentzikoff C, Poulakidas E, Makropoulos V, Pantelias GE, et al. Clonal chromosome rearrangements in hairy cell leukemia: personal experience and review of literature. Cancer Genet Cytogenet. 2001;129(2):138–44.

    Article  CAS  PubMed  Google Scholar 

  97. Nordgren A, Corcoran M, Saaf A, Bremer A, Kluin-Nelemans HC, Schoumans J, et al. Characterisation of hairy cell leukaemia by tiling resolution array-based comparative genome hybridisation: a series of 13 cases and review of the literature. Eur J Haematol. 2010;84(1):17–25.

    Article  CAS  PubMed  Google Scholar 

  98. Hockley SL, Morgan GJ, Leone PE, Walker BA, Morilla A, Else M, et al. High-resolution genomic profiling in hairy cell leukemia-variant compared with typical hairy cell leukemia. Leukemia. 2011;25(7):1189–92.

    Article  CAS  PubMed  Google Scholar 

  99. Chen YH, Gao J, Fan G, Peterson LC. Nuclear expression of sox11 is highly associated with mantle cell lymphoma but is independent of t(11;14)(q13;q32) in non-mantle cell B-cell neoplasms. Mod Pathol. 2010;23(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  100. Ye H, Chuang SS, Dogan A, Isaacson PG, Du MQ. T(1;14) and t(11;18) in the differential diagnosis of Waldenstrom’s macroglobulinemia. Mod Pathol. 2004;17(9):1150–4.

    Article  PubMed  Google Scholar 

  101. Gomyo H, Kajimoto K, Maeda A, Mizuno I, Funada Y, Koizumi T, et al. T(14;18)(q32;q21)-bearing pleural MALT lymphoma with IgM paraproteinemia: value of detection of specific cytogenetic abnormalities in the differential diagnosis of MALT lymphoma and lymphoplasmacytic lymphoma. Hematology. 2007;12(4):315–8.

    Article  CAS  PubMed  Google Scholar 

  102. Nguyen-Khac F, Lambert J, Chapiro E, Grelier A, Mould S, Barin C, et al. Chromosomal aberrations and their prognostic value in a series of 174 untreated patients with Waldenstrom’s macroglobulinemia. Haematologica. 2013;98(4):649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mansoor A, Medeiros LJ, Weber DM, Alexanian R, Hayes K, Jones D, et al. Cytogenetic findings in lymphoplasmacytic lymphoma/Waldenstrom macroglobulinemia. Chromosomal abnormalities are associated with the polymorphous subtype and an aggressive clinical course. Am J Clin Pathol. 2001;116(4):543–9.

    Article  CAS  PubMed  Google Scholar 

  104. Cook JR, Aguilera NI, Reshmi S, Huang X, Yu Z, Gollin SM, et al. Deletion 6q is not a characteristic marker of nodal lymphoplasmacytic lymphoma. Cancer Genet Cytogenet. 2005;162(1):85–8.

    Article  CAS  PubMed  Google Scholar 

  105. Sargent RL, Cook JR, Aguilera NI, Surti U, Abbondanzo SL, Gollin SM, et al. Fluorescence immunophenotypic and interphase cytogenetic characterization of nodal lymphoplasmacytic lymphoma. Am J Surg Pathol. 2008;32(11):1643–53.

    Article  PubMed  Google Scholar 

  106. Poulain S, Roumier C, Galiegue-Zouitina S, Daudignon A, Herbaux C, Aiijou R, et al. Genome wide SNP array identified multiple mechanisms of genetic changes in Waldenstrom macroglobulinemia. Am J Hematol. 2013;88(11):948–54.

    Article  CAS  PubMed  Google Scholar 

  107. Michaux L, Dierlamm J, Wlodarska I, Stul M, Bosly A, Delannoy A, et al. Trisomy 3 is a consistent chromosome change in malignant lymphoproliferative disorders preceded by cold agglutinin disease. Br J Haematol. 1995;91(2):421–4.

    Article  CAS  PubMed  Google Scholar 

  108. Wong KF, So CC, Chan JC, Kho BC, Chan JK. Gain of chromosome 3/3q in B-cell chronic lymphoproliferative disorder is associated with plasmacytoid differentiation with or without IgM overproduction. Cancer Genet Cytogenet. 2002;136(1):82–5.

    Article  CAS  PubMed  Google Scholar 

  109. Braggio E, Keats JJ, Leleu X, Van Wier S, Jimenez-Zepeda VH, Valdez R, et al. Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom’s macroglobulinemia. Cancer Res. 2009;69(8):3579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–46.

    Article  CAS  PubMed  Google Scholar 

  111. Buckley PG, Walsh SH, Laurell A, Sundstrom C, Roos G, Langford CF, et al. Genome-wide microarray-based comparative genomic hybridization analysis of lymphoplasmacytic lymphomas reveals heterogeneous aberrations. Leuk Lymphoma. 2009;50(9):1528–34.

    Article  CAS  PubMed  Google Scholar 

  112. Offit K, Parsa NZ, Filippa D, Jhanwar SC, Chaganti RS. T(9;14)(p13;q32) denotes a subset of low-grade non-Hodgkin’s lymphoma with plasmacytoid differentiation. Blood. 1992;80(10):2594–9.

    CAS  PubMed  Google Scholar 

  113. Schop RF, Kuehl WM, Van Wier SA, Ahmann GJ, Price-Troska T, Bailey RJ, et al. Waldenstrom macroglobulinemia neoplastic cells lack immunoglobulin heavy chain locus translocations but have frequent 6q deletions. Blood. 2002;100(8):2996–3001.

    Article  CAS  PubMed  Google Scholar 

  114. Cook JR, Aguilera NI, Reshmi-Skarja S, Huang X, Yu Z, Gollin SM, et al. Lack of PAX5 rearrangements in lymphoplasmacytic lymphomas: reassessing the reported association with t(9;14). Hum Pathol. 2004;35(4):447–54.

    Article  CAS  PubMed  Google Scholar 

  115. George TI, Wrede JE, Bangs CD, Cherry AM, Warnke RA, Arber DA. Low-grade B-cell lymphomas with plasmacytic differentiation lack PAX5 gene rearrangements. J Mol Diagn. 2005;7(3):346–51.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Poppe B, De Paepe P, Michaux L, Dastugue N, Bastard C, Herens C, et al. PAX5/IGH rearrangement is a recurrent finding in a subset of aggressive B-NHL with complex chromosomal rearrangements. Genes Chromosom Cancer. 2005;44(2):218–23.

    Article  CAS  PubMed  Google Scholar 

  117. Streubel B, Lamprecht A, Dierlamm J, Cerroni L, Stolte M, Ott G, et al. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood. 2003;101(6):2335–9.

    Article  CAS  PubMed  Google Scholar 

  118. Streubel B, Simonitsch-Klupp I, Mullauer L, Lamprecht A, Huber D, Siebert R, et al. Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia. 2004;18(10):1722–6.

    Article  CAS  PubMed  Google Scholar 

  119. Murga Penas EM, Callet-Bauchu E, Ye H, Hinz K, Albert N, Copie-Bergman C, et al. The translocations t(6;18;11)(q24;q21;q21) and t(11;14;18)(q21;q32;q21) lead to a fusion of the API2 and MALT1 genes and occur in MALT lymphomas. Haematologica. 2007;92(3):405–9.

    Article  PubMed  Google Scholar 

  120. Tan SY, Ye H, Liu H, Lim KH, Toh HC, Ng CF, et al. T(11;18)(q21;q21)-positive transformed MALT lymphoma. Histopathology. 2008;52(6):777–80.

    Article  CAS  PubMed  Google Scholar 

  121. Kuper-Hommel MJ. MI Schreuder, AH Gemmink, and JH van Krieken, T(14;18)(q32;q21) involving MALT1 and IGH genes occurs in extranodal diffuse large B-cell lymphomas of the breast and testis. Mod Pathol. 2013;26(3):421–7.

    Article  CAS  PubMed  Google Scholar 

  122. Starostik P, Patzner J, Greiner A, Schwarz S, Kalla J, Ott G, et al. Gastric marginal zone B-cell lymphomas of MALT type develop along 2 distinct pathogenetic pathways. Blood. 2002;99(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  123. Ho L, Davis RE, Conne B, Chappuis R, Berczy M, Mhawech P, et al. MALT1 and the API2-MALT1 fusion act between CD40 and IKK and confer NF-kappa B-dependent proliferative advantage and resistance against FAS-induced cell death in B cells. Blood. 2005;105(7):2891–9.

    Article  CAS  PubMed  Google Scholar 

  124. Ye H, Gong L, Liu H, Hamoudi RA, Shirali S, Ho L, et al. MALT lymphoma with t(14;18)(q32;q21)/IGH-MALT1 is characterized by strong cytoplasmic MALT1 and BCL10 expression. J Pathol. 2005;205(3):293–301.

    Article  CAS  PubMed  Google Scholar 

  125. Libra M, Gloghini A, Malaponte G, Gangemi P, De Re V, Cacopardo B, et al. Association of t(14;18) translocation with HCV infection in gastrointestinal MALT lymphomas. J Hepatol. 2008;49(2):170–4.

    Article  CAS  PubMed  Google Scholar 

  126. Nakamura S, Ye H, Bacon CM, Liu H, Goatly A, Matsumoto T, et al. Gastric MALT lymphoma with t(14;18)(q32;q21) involving IGH and BCL2 genes that responded to helicobacter pylori eradication. J Clin Pathol. 2007;60(10):1171–3.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Maes B, Demunter A, Peeters B, De Wolf-Peeters C. BCL10 mutation does not represent an important pathogenic mechanism in gastric MALT-type lymphoma, and the presence of the API2-MLT fusion is associated with aberrant nuclear BCL10 expression. Blood. 2002;99(4):1398–404.

    Article  CAS  PubMed  Google Scholar 

  128. Chuang SS, Liu H, Martin-Subero JI, Siebert R, Huang WT, Ye H. Pulmonary mucosa-associated lymphoid tissue lymphoma with strong nuclear B-cell CLL/lymphoma 10 (BCL10) expression and novel translocation t(1;2)(p22;p12)/immunoglobulin kappa chain-BCL10. J Clin Pathol. 2007;60(6):727–8.

    Article  PubMed  Google Scholar 

  129. Ansell SM, Akasaka T, McPhail E, Manske M, Braggio E, Price-Troska T, et al. T(X;14)(p11;q32) in MALT lymphoma involving GPR34 reveals a role for GPR34 in tumor cell growth. Blood. 2012;120(19):3949–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Baens M, Finalet Ferreiro J, Tousseyn T, Urbankova H, Michaux L, de Leval L, et al. T(X;14)(p11.4;q32.33) is recurrent in marginal zone lymphoma and up-regulates GPR34. Haematologica. 2012;97(2):184–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Streubel B, Vinatzer U, Lamprecht A, Raderer M, Chott A. T(3;14)(p14.1;q32) involving IGH and FOXP1 is a novel recurrent chromosomal aberration in MALT lymphoma. Leukemia. 2005;19(4):652–8.

    Article  CAS  PubMed  Google Scholar 

  132. Goatly A, Bacon CM, Nakamura S, Ye H, Kim I, Brown PJ, et al. FOXP1 abnormalities in lymphoma: translocation breakpoint mapping reveals insights into deregulated transcriptional control. Mod Pathol. 2008;21(7):902–11.

    Article  CAS  PubMed  Google Scholar 

  133. Vinatzer U, Gollinger M, Mullauer L, Raderer M, Chott A, Streubel B. Mucosa-associated lymphoid tissue lymphoma: novel translocations including rearrangements of ODZ2, JMJD2C, and CNN3. Clin Cancer Res. 2008;14(20):6426–31.

    Article  CAS  PubMed  Google Scholar 

  134. Remstein ED, Kurtin PJ, James CD, Wang XY, Meyer RG, Dewald GW. Mucosa-associated lymphoid tissue lymphomas with t(11;18)(q21;q21) and mucosa-associated lymphoid tissue lymphomas with aneuploidy develop along different pathogenetic pathways. Am J Pathol. 2002;161(1):63–71.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Joao C, Farinha P, da Silva MG, Martins C, Crespo M, Cabecadas J. Cytogenetic abnormalities in MALT lymphomas and their precursor lesions from different organs. A fluorescence in situ hybridization (FISH) study. Histopathology. 2007;50(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  136. Kominato S, Nakayama T, Sato F, Yamada S, Xia H, Fujiyoshi Y, et al. Characterization of chromosomal aberrations in thymic MALT lymphoma. Pathol Int. 2012;62(2):93–8.

    Article  CAS  PubMed  Google Scholar 

  137. Mulligan S, Hu P, Murphy A, Han J, Tam M, Lin P, et al. Variations in MALT1 gene disruptions detected by FISH in 109 MALT lymphomas occurring in different primary sites. J Assoc Genet Technol. 2011;37(2):76–9.

    PubMed  Google Scholar 

  138. Liguori G, Cantile M, Cerrone M, La Mantia E, Di Bonito M, Zanconati F, et al. Breast MALT lymphomas: a clinicopathological and cytogenetic study of 9 cases. Oncol Rep. 2012;28(4):1211–6.

    Article  PubMed  Google Scholar 

  139. Streubel B, Seitz G, Stolte M, Birner P, Chott A, Raderer M. MALT lymphoma associated genetic aberrations occur at different frequencies in primary and secondary intestinal MALT lymphomas. Gut. 2006;55(11):1581–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Honma K, Tsuzuki S, Nakagawa M, Karnan S, Aizawa Y, Kim WS, et al. TNFAIP3 is the target gene of chromosome band 6q23.3-q24.1 loss in ocular adnexal marginal zone B cell lymphoma. Genes Chromosom Cancer. 2008;47(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  141. Kwee I, Rancoita PM, Rinaldi A, Ferreri AJ, Bhagat G, Gascoyne RD, et al. Genomic profiles of MALT lymphomas: variability across anatomical sites. Haematologica. 2011;96(7):1064–6.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Liu H, Ye H, Dogan A, Ranaldi R, Hamoudi RA, Bearzi I, et al. T(11;18)(q21;q21) is associated with advanced mucosa-associated lymphoid tissue lymphoma that expresses nuclear BCL10. Blood. 2001;98(4):1182–7.

    Article  CAS  PubMed  Google Scholar 

  143. Liu H, Ye H, Ruskone-Fourmestraux A, De Jong D, Pileri S, Thiede C, et al. T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. Pylori eradication. Gastroenterology. 2002;122(5):1286–94.

    Article  CAS  PubMed  Google Scholar 

  144. Wundisch T, Thiede C, Morgner A, Dempfle A, Gunther A, Liu H, et al. Long-term follow-up of gastric MALT lymphoma after helicobacter pylori eradication. J Clin Oncol. 2005;23(31):8018–24.

    Article  PubMed  Google Scholar 

  145. Levy M, Copie-Bergman C, Gameiro C, Chaumette MT, Delfau-Larue MH, Haioun C, et al. Prognostic value of translocation t(11;18) in tumoral response of low-grade gastric lymphoma of mucosa-associated lymphoid tissue type to oral chemotherapy. J Clin Oncol. 2005;23(22):5061–6.

    Article  PubMed  Google Scholar 

  146. Levy M, Copie-Bergman C, Amiot A, Dupuis J, Le Baleur Y, Belhadj K, et al. Rituximab and chlorambucil versus rituximab alone in gastric mucosa-associated lymphoid tissue lymphoma according to t(11;18) status: a monocentric non-randomized observational study. Leuk Lymphoma. 2013;54(5):940–4.

    Article  CAS  PubMed  Google Scholar 

  147. Ye H, Gong L, Liu H, Ruskone-Fourmestraux A, de Jong D, Pileri S, et al. Strong BCL10 nuclear expression identifies gastric MALT lymphomas that do not respond to H pylori eradication. Gut. 2006;55(1):137–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dong G, Liu C, Ye H, Gong L, Zheng J, Li M, et al. BCL10 nuclear expression and t(11;18)(q21;q21) indicate nonresponsiveness to helicobacter pylori eradication of Chinese primary gastric MALT lymphoma. Int J Hematol. 2008;88(5):516–23.

    Article  CAS  PubMed  Google Scholar 

  149. Zhou Y, Ye H, Martin-Subero JI, Gesk S, Hamoudi R, Lu YJ, et al. The pattern of genomic gains in salivary gland MALT lymphomas. Haematologica. 2007;92(7):921–7.

    Article  CAS  PubMed  Google Scholar 

  150. Chanudet E, Ye H, Ferry J, Bacon CM, Adam P, Muller-Hermelink HK, et al. A20 deletion is associated with copy number gain at the TNFA/B/C locus and occurs preferentially in translocation-negative MALT lymphoma of the ocular adnexa and salivary glands. J Pathol. 2009;217(3):420–30.

    Article  CAS  PubMed  Google Scholar 

  151. Zhou Y, Ye H, Martin-Subero JI, Hamoudi R, Lu YJ, Wang R, et al. Distinct comparative genomic hybridisation profiles in gastric mucosa-associated lymphoid tissue lymphomas with and without t(11;18)(q21;q21). Br J Haematol. 2006;133(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  152. Fukuhara N, Nakamura T, Nakagawa M, Tagawa H, Takeuchi I, Yatabe Y, et al. Chromosomal imbalances are associated with outcome of helicobacter pylori eradication in t(11;18)(q21;q21) negative gastric mucosa-associated lymphoid tissue lymphomas. Genes Chromosom Cancer. 2007;46(8):784–90.

    Article  CAS  PubMed  Google Scholar 

  153. Krugmann J, Tzankov A, Dirnhofer S, Fend F, Greil R, Siebert R, et al. Unfavourable prognosis of patients with trisomy 18q21 detected by fluorescence in situ hybridisation in t(11;18) negative, surgically resected, gastrointestinal B cell lymphomas. J Clin Pathol. 2004;57(4):360–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Krugmann J, Tzankov A, Dirnhofer S, Fend F, Wolf D, Siebert R, et al. Complete or partial trisomy 3 in gastro-intestinal MALT lymphomas co-occurs with aberrations at 18q21 and correlates with advanced disease stage: a study on 25 cases. World J Gastroenterol. 2005;11(46):7384–5.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hamoudi RA, Appert A, Ye H, Ruskone-Fourmestraux A, Streubel B, Chott A, et al. Differential expression of NF-kappaB target genes in MALT lymphoma with and without chromosome translocation: insights into molecular mechanism. Leukemia. 2010;24(8):1487–97.

    Article  CAS  PubMed  Google Scholar 

  156. Dierlamm J, Pittaluga S, Wlodarska I, Stul M, Thomas J, Boogaerts M, et al. Marginal zone B-cell lymphomas of different sites share similar cytogenetic and morphologic features. Blood. 1996;87(1):299–307.

    CAS  PubMed  Google Scholar 

  157. Callet-Bauchu E, Baseggio L, Felman P, Traverse-Glehen A, Berger F, Morel D, et al. Cytogenetic analysis delineates a spectrum of chromosomal changes that can distinguish non-MALT marginal zone B-cell lymphomas among mature B-cell entities: a description of 103 cases. Leukemia. 2005;19(10):1818–23.

    Article  CAS  PubMed  Google Scholar 

  158. Krijgsman O, Gonzalez P, Ponz OB, Roemer MG, Slot S, Broeks A, et al. Dissecting the gray zone between follicular lymphoma and marginal zone lymphoma using morphological and genetic features. Haematologica. 2013;98(12):1921–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bentley G, Palutke M, Mohamed AN. Variant t(14;18) in malignant lymphoma: a report of seven cases. Cancer Genet Cytogenet. 2005;157(1):12–7.

    Article  CAS  PubMed  Google Scholar 

  160. Guo Y, Karube K, Kawano R, Yamaguchi T, Suzumiya J, Huang GS, et al. Low-grade follicular lymphoma with t(14;18) presents a homogeneous disease entity otherwise the rest comprises minor groups of heterogeneous disease entities with Bcl2 amplification, Bcl6 translocation or other gene aberrances. Leukemia. 2005;19(6):1058–63.

    Article  CAS  PubMed  Google Scholar 

  161. Impera L, Albano F, Lo Cunsolo C, Funes S, Iuzzolino P, Laveder F, et al. A novel fusion 5’AFF3/3’BCL2 originated from a t(2;18)(q11.2;q21.33) translocation in follicular lymphoma. Oncogene. 2008;27(47):6187–90.

    Article  CAS  PubMed  Google Scholar 

  162. Leich E, Salaverria I, Bea S, Zettl A, Wright G, Moreno V, et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood. 2009;114(4):826–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tagawa H, Karube K, Guo Y, Takeshita M, Kikuchi M, Morishima Y, et al. Trisomy 3 is a specific genomic aberration of t(14;18) negative follicular lymphoma. Leukemia. 2007;21(12):2549–51.

    Article  CAS  PubMed  Google Scholar 

  164. Horsman DE, Connors JM, Pantzar T, Gascoyne RD. Analysis of secondary chromosomal alterations in 165 cases of follicular lymphoma with t(14;18). Genes Chromosom Cancer. 2001;30(4):375–82.

    Article  CAS  PubMed  Google Scholar 

  165. Aamot H, Micci F, Holte H, Delabie J, Heim S. M-FISH cytogenetic analysis of non-Hodgkin lymphomas with t(14;18)(q32;q21) and add(1)(p36) as a secondary abnormality shows that the extra material often comes from chromosome arm 17q. Leuk Lymphoma. 2002;43(5):1051–6.

    Article  CAS  PubMed  Google Scholar 

  166. Hoglund M, Sehn L, Connors JM, Gascoyne RD, Siebert R, Sall T, et al. Identification of cytogenetic subgroups and karyotypic pathways of clonal evolution in follicular lymphomas. Genes Chromosom Cancer. 2004;39(3):195–204.

    Article  PubMed  Google Scholar 

  167. d’Amore F, Chan E, Iqbal J, Geng H, Young K, Xiao L, et al. Clonal evolution in t(14;18)-positive follicular lymphoma, evidence for multiple common pathways, and frequent parallel clonal evolution. Clin Cancer Res. 2008;14(22):7180–7.

    Article  PubMed  CAS  Google Scholar 

  168. Elenitoba-Johnson KS, Gascoyne RD, Lim MS, Chhanabai M, Jaffe ES, Raffeld M. Homozygous deletions at chromosome 9p21 involving p16 and p15 are associated with histologic progression in follicle center lymphoma. Blood. 1998;91(12):4677–85.

    CAS  PubMed  Google Scholar 

  169. Johnson NA, Al-Tourah A, Brown CJ, Connors JM, Gascoyne RD, Horsman DE. Prognostic significance of secondary cytogenetic alterations in follicular lymphomas. Genes Chromosom Cancer. 2008;47(12):1038–48.

    Article  CAS  PubMed  Google Scholar 

  170. Kwiecinska A, Ichimura K, Berglund M, Dinets A, Sulaiman L, Collins VP, et al. Amplification of 2p as a genomic marker for transformation in lymphoma. Genes Chromosom Cancer. 2014;53(9):750–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Pasqualucci L, Khiabanian H, Fangazio M, Vasishtha M, Messina M, Holmes AB, et al. Genetics of follicular lymphoma transformation. Cell Rep. 2014;6(1):130–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Katzenberger T, Kalla J, Leich E, Stocklein H, Hartmann E, Barnickel S, et al. A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36. Blood. 2009;113(5):1053–61.

    Article  CAS  PubMed  Google Scholar 

  173. Schmidt J, Gong S, Marafioti T, Mankel B, Gonzalez-Farre B, Balague O, et al. Genome-wide analysis of pediatric-type follicular lymphoma reveals low genetic complexity and recurrent alterations of TNFRSF14 gene. Blood. 2016;128(8):1101–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cheung KJ, Shah SP, Steidl C, Johnson N, Relander T, Telenius A, et al. Genome-wide profiling of follicular lymphoma by array comparative genomic hybridization reveals prognostically significant DNA copy number imbalances. Blood. 2009;113(1):137–48.

    Article  CAS  PubMed  Google Scholar 

  175. Schwaenen C, Viardot A, Berger H, Barth TF, Bentink S, Dohner H, et al. Microarray-based genomic profiling reveals novel genomic aberrations in follicular lymphoma which associate with patient survival and gene expression status. Genes Chromosom Cancer. 2009;48(1):39–54.

    Article  CAS  PubMed  Google Scholar 

  176. O’Shea D, O’Riain C, Gupta M, Waters R, Yang Y, Wrench D, et al. Regions of acquired uniparental disomy at diagnosis of follicular lymphoma are associated with both overall survival and risk of transformation. Blood. 2009;113(10):2298–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Jardin F, Buchonnet G, Parmentier F, Contentin N, Lepretre S, Lenain P, et al. Follicle center lymphoma is associated with significantly elevated levels of BCL-6 expression among lymphoma subtypes, independent of chromosome 3q27 rearrangements. Leukemia. 2002;16(11):2318–25.

    Article  CAS  PubMed  Google Scholar 

  178. Ott G, Katzenberger T, Lohr A, Kindelberger S, Rudiger T, Wilhelm M, et al. Cytomorphologic, immunohistochemical, and cytogenetic profiles of follicular lymphoma: 2 types of follicular lymphoma grade 3. Blood. 2002;99(10):3806–12.

    Article  CAS  PubMed  Google Scholar 

  179. Bosga-Bouwer AG, van Imhoff GW, Boonstra R, van der Veen A, Haralambieva E, van den Berg A, et al. Follicular lymphoma grade 3B includes 3 cytogenetically defined subgroups with primary t(14;18), 3q27, or other translocations: t(14;18) and 3q27 are mutually exclusive. Blood. 2003;101(3):1149–54.

    Article  CAS  PubMed  Google Scholar 

  180. Horn H, Schmelter C, Leich E, Salaverria I, Katzenberger T, Ott MM, et al. Follicular lymphoma grade 3B is a distinct neoplasm according to cytogenetic and immunohistochemical profiles. Haematologica. 2011;96(9):1327–34.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Karube K, Ying G, Tagawa H, Niino D, Aoki R, Kimura Y, et al. BCL6 gene amplification/3q27 gain is associated with unique clinicopathological characteristics among follicular lymphoma without BCL2 gene translocation. Mod Pathol. 2008;21(8):973–8.

    Article  CAS  PubMed  Google Scholar 

  182. Christie L, Kernohan N, Levison D, Sales M, Cunningham J, Gillespie K, et al. C-MYC translocation in t(14;18) positive follicular lymphoma at presentation: an adverse prognostic indicator? Leuk Lymphoma. 2008;49(3):470–6.

    Article  CAS  PubMed  Google Scholar 

  183. Ladanyi M, Offit K, Chaganti RS. Variant t(8;14) translocations in non-Burkitt’s non-Hodgkin’s lymphomas. Blood. 1992;79(5):1377–9.

    CAS  PubMed  Google Scholar 

  184. Shiseki M, Masuda A, Yoshinaga K, Mori N, Okada M, Motoji T, et al. Identification of the SOX5 gene as a novel IGH-involved translocation partner in BCL2-negative follicular lymphoma with t(12;14)(p12.2;q32). Int J Hematol. 2015;102(5):633–8.

    Article  CAS  PubMed  Google Scholar 

  185. Salaverria I, Philipp C, Oschlies I, Kohler CW, Kreuz M, Szczepanowski M, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults. Blood. 2011;118(1):139–47.

    Article  CAS  PubMed  Google Scholar 

  186. Liu Q, Salaverria I, Pittaluga S, Jegalian AG, Xi L, Siebert R, et al. Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma. Am J Surg Pathol. 2013;37(3):333–43.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Gu K, Chan WC, Hawley RC. Practical detection of t(14;18)(IgH/BCL2) in follicular lymphoma. Arch Pathol Lab Med. 2008;132(8):1355–61.

    CAS  PubMed  Google Scholar 

  189. Bentz JS, Rowe LR, Anderson SR, Gupta PK, McGrath CM. Rapid detection of the t(11;14) translocation in mantle cell lymphoma by interphase fluorescence in situ hybridization on archival cytopathologic material. Cancer. 2004;102(2):124–31.

    Article  CAS  PubMed  Google Scholar 

  190. Sun T, Nordberg ML, Cotelingam JD, Veillon DM, Ryder J. Fluorescence in situ hybridization: method of choice for a definitive diagnosis of mantle cell lymphoma. Am J Hematol. 2003;74(1):78–84.

    Article  PubMed  Google Scholar 

  191. Belaud-Rotureau MA, Parrens M, Dubus P, Garroste JC, de Mascarel A, Merlio JP. A comparative analysis of FISH, RT-PCR, PCR, and immunohistochemistry for the diagnosis of mantle cell lymphomas. Mod Pathol. 2002;15(5):517–25.

    Article  PubMed  Google Scholar 

  192. Katzenberger T, Kienle D, Stilgenbauer S, Holler S, Schilling C, Mader U, et al. Delineation of distinct tumour profiles in mantle cell lymphoma by detailed cytogenetic, interphase genetic and morphological analysis. Br J Haematol. 2008;142(4):538–50.

    Article  PubMed  Google Scholar 

  193. Bjorck E, Landgren O, Schoumans J, Christensson B, Bjorkholm M, MacDonald AP, et al. Molecular cytogenetic approach to the diagnosis of splenic lymphoma: a case report of blastoid mantle cell lymphoma. Leuk Lymphoma. 2003;44(7):1229–34.

    Article  PubMed  Google Scholar 

  194. Ho AK, Hill S, Preobrazhensky SN, Miller ME, Chen Z, Bahler DW. Small B-cell neoplasms with typical mantle cell lymphoma immunophenotypes often include chronic lymphocytic leukemias. Am J Clin Pathol. 2009;131(1):27–32.

    Article  PubMed  Google Scholar 

  195. Maravelaki S, Burford A, Wotherspoon A, Joshi R, Matutes E, Catovsky D, et al. Molecular cytogenetic study of a mantle cell lymphoma with a complex translocation involving the CCND1 (11q13) region. Cancer Genet Cytogenet. 2004;154(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  196. Mohamed AN, Ali W, Kopptich F, Al Katib A. Banded chromosomes versus fluorescence in situ hybridization in the diagnosis of mantle cell lymphoma: a lesson from three cases. Cancer Genet Cytogenet. 2002;136(2):108–12.

    Article  CAS  PubMed  Google Scholar 

  197. Aventin A, Nomdedeu J, Briones J, Espinosa I, Bordes R, Sierra J. Insertion of the CCND1 gene into the IgH locus in a case of leukaemic small cell mantle lymphoma with normal chromosomes 11 and 14. J Clin Pathol. 2003;56(10):798–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Espinet B, Salaverria I, Bea S, Ruiz-Xiville N, Balague O, Salido M, et al. Incidence and prognostic impact of secondary cytogenetic aberrations in a series of 145 patients with mantle cell lymphoma. Genes Chromosom Cancer. 2010;49(5):439–51.

    CAS  PubMed  Google Scholar 

  199. Aamot HV, Tjonnfjord GE, Delabie J, Heim S. Molecular cytogenetic analysis of leukemic mantle cell lymphoma with a cryptic t(11;14). Cancer Genet Cytogenet. 2006;165(2):172–5.

    Article  CAS  PubMed  Google Scholar 

  200. Gazzo S, Felman P, Berger F, Salles G, Magaud JP, Callet-Bauchu E. Atypical cytogenetic presentation of t(11;14) in mantle cell lymphoma. Haematologica. 2005;90(12):1708–9.

    CAS  PubMed  Google Scholar 

  201. Wlodarska I, Meeus P, Stul M, Thienpont L, Wouters E, Marcelis L, et al. Variant t(2;11)(p11;q13) associated with the IgK-CCND1 rearrangement is a recurrent translocation in leukemic small-cell B-non-Hodgkin lymphoma. Leukemia. 2004;18(10):1705–10.

    Article  CAS  PubMed  Google Scholar 

  202. Kawamata N, Ogawa S, Gueller S, Ross SH, Huynh T, Chen J, et al. Identified hidden genomic changes in mantle cell lymphoma using high-resolution single nucleotide polymorphism genomic array. Exp Hematol. 2009;37(8):937–46.

    Article  CAS  PubMed  Google Scholar 

  203. Halldorsdottir AM, Sander B, Goransson H, Isaksson A, Kimby E, Mansouri M, et al. High-resolution genomic screening in mantle cell lymphoma—specific changes correlate with genomic complexity, the proliferation signature and survival. Genes Chromosom Cancer. 2011;50(2):113–21.

    Article  CAS  PubMed  Google Scholar 

  204. Au WY, Gascoyne RD, Viswanatha DS, Connors JM, Klasa RJ, Horsman DE. Cytogenetic analysis in mantle cell lymphoma: a review of 214 cases. Leuk Lymphoma. 2002;43(4):783–91.

    Article  PubMed  Google Scholar 

  205. Hutter G, Scheubner M, Ott G, Zimmermann Y, Hubler K, Roth S, et al. Allelic genotyping reveals a hierarchy of genomic alterations in mantle cell lymphoma associated to cell proliferation. Ann Hematol. 2009;88(9):821–8.

    Article  CAS  PubMed  Google Scholar 

  206. Delfau-Larue MH, Klapper W, Berger F, Jardin F, Briere J, Salles G, et al. High-dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma. Blood. 2015;126(5):604–11.

    Article  CAS  PubMed  Google Scholar 

  207. Parry-Jones N, Matutes E, Morilla R, Brito-Babapulle V, Wotherspoon A, Swansbury GJ, et al. Cytogenetic abnormalities additional to t(11;14) correlate with clinical features in leukaemic presentation of mantle cell lymphoma, and may influence prognosis: a study of 60 cases by FISH. Br J Haematol. 2007;137(2):117–24.

    Article  CAS  PubMed  Google Scholar 

  208. Monni O, Oinonen R, Elonen E, Franssila K, Teerenhovi L, Joensuu H, et al. Gain of 3q and deletion of 11q22 are frequent aberrations in mantle cell lymphoma. Genes Chromosom Cancer. 1998;21(4):298–307.

    Article  CAS  PubMed  Google Scholar 

  209. Allen JE, Hough RE, Goepel JR, Bottomley S, Wilson GA, Alcock HE, et al. Identification of novel regions of amplification and deletion within mantle cell lymphoma DNA by comparative genomic hybridization. Br J Haematol. 2002;116(2):291–8.

    Article  CAS  PubMed  Google Scholar 

  210. Solenthaler M, Matutes E, Brito-Babapulle V, Morilla R, Catovsky D. p53 and mdm2 in mantle cell lymphoma in leukemic phase. Haematologica. 2002;87(11):1141–50.

    CAS  PubMed  Google Scholar 

  211. Sarkozy C, Terre C, Jardin F, Radford I, Roche-Lestienne C, Penther D, et al. Complex karyotype in mantle cell lymphoma is a strong prognostic factor for the time to treatment and overall survival, independent of the MCL international prognostic index. Genes Chromosom Cancer. 2014;53(1):106–16.

    Article  CAS  PubMed  Google Scholar 

  212. Cohen JB, Ruppert AS, Heerema NA, Andritsos LA, Jones JA, Porcu P, et al. Complex karyotype is associated with aggressive disease and shortened progression-free survival in patients with newly diagnosed mantle cell lymphoma. Clin Lymphoma Myeloma Leuk. 2015;15(5):278–85. e1

    Article  PubMed  Google Scholar 

  213. Woroniecka R, Pienkowska-Grela B, Grygalewicz B, Rygier J, Witkowska A, Rymkiewicz G, et al. Significance of chromosomal markers in the diagnosis of mantle cell lymphoma (MCL). J Appl Genet. 2002;43(4):545–53.

    PubMed  Google Scholar 

  214. Parrens M, Belaud-Rotureau MA, Fitoussi O, Carerre N, Bouabdallah K, Marit G, et al. Blastoid and common variants of mantle cell lymphoma exhibit distinct immunophenotypic and interphase FISH features. Histopathology. 2006;48(4):353–62.

    Article  CAS  PubMed  Google Scholar 

  215. Khoury JD, Sen F, Abruzzo LV, Hayes K, Glassman A, Medeiros LJ. Cytogenetic findings in blastoid mantle cell lymphoma. Hum Pathol. 2003;34(10):1022–9.

    Article  CAS  PubMed  Google Scholar 

  216. Hao S, Sanger W, Onciu M, Lai R, Schlette EJ, Medeiros LJ. Mantle cell lymphoma with 8q24 chromosomal abnormalities: a report of 5 cases with blastoid features. Mod Pathol. 2002;15(12):1266–72.

    Article  PubMed  Google Scholar 

  217. Vaishampayan UN, Mohamed AN, Dugan MC, Bloom RE, Palutke M. Blastic mantle cell lymphoma associated with Burkitt-type translocation and hypodiploidy. Br J Haematol. 2001;115(1):66–8.

    Article  CAS  PubMed  Google Scholar 

  218. Felten CL, Stephenson CF, Ortiz RO, Hertzberg L. Burkitt transformation of mantle cell lymphoma. Leuk Lymphoma. 2004;45(10):2143–7.

    Article  CAS  PubMed  Google Scholar 

  219. Michaux L, Wlodarska I, Theate I, Stul M, Scheiff JM, Deneys V, et al. Coexistence of BCL1/CCND1 and CMYC aberrations in blastoid mantle cell lymphoma: a rare finding associated with very poor outcome. Ann Hematol. 2004;83(9):578–83.

    Article  CAS  PubMed  Google Scholar 

  220. Oliveira FM, Tone LG, Simoes BP, Rego EM, Araujo AG, Falcao RP. Blastoid mantle cell lymphoma with t(2;8) (p12;q24). Leuk Lymphoma. 2007;48(10):2079–82.

    Article  CAS  PubMed  Google Scholar 

  221. Nagy B, Lundan T, Larramendy ML, Aalto Y, Zhu Y, Niini T, et al. Abnormal expression of apoptosis-related genes in haematological malignancies: overexpression of MYC is poor prognostic sign in mantle cell lymphoma. Br J Haematol. 2003;120(3):434–41.

    Article  CAS  PubMed  Google Scholar 

  222. Reddy K, Ansari-Lari M, Dipasquale B. Blastic mantle cell lymphoma with a Burkitt translocation. Leuk Lymphoma. 2008;49(4):740–50.

    Article  CAS  PubMed  Google Scholar 

  223. Fu K, Weisenburger DD, Greiner TC, Dave S, Wright G, Rosenwald A, et al. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood. 2005;106(13):4315–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Wlodarska I, Dierickx D, Vanhentenrijk V, Van Roosbroeck K, Pospisilova H, Minnei F, et al. Translocations targeting CCND2, CCND3, and MYCN do occur in t(11;14)-negative mantle cell lymphomas. Blood. 2008;111(12):5683–90.

    Article  CAS  PubMed  Google Scholar 

  225. Shiller SM, Zieske A, Holmes H 3rd, Feldman AL, Law ME, Saad R. CD5-positive, cyclinD1-negative mantle cell lymphoma with a translocation involving the CCND2 gene and the IGL locus. Cancer Gene Ther. 2011;204(3):162–4.

    Article  Google Scholar 

  226. Salaverria I, Royo C, Carvajal-Cuenca A, Clot G, Navarro A, Valera A, et al. CCND2 rearrangements are the most frequent genetic events in cyclin D1(−) mantle cell lymphoma. Blood. 2013;121(8):1394–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Herens C, Lambert F, Quintanilla-Martinez L, Bisig B, Deusings C, de Leval L. Cyclin D1-negative mantle cell lymphoma with cryptic t(12;14)(p13;q32) and cyclin D2 overexpression. Blood. 2008;111(3):1745–6.

    Article  CAS  PubMed  Google Scholar 

  228. Stefancikova L, Moulis M, Fabian P, Falkova I, Vasova I, Kren L, et al. Complex analysis of cyclin D1 expression in mantle cell lymphoma: two cyclin D1-negative cases detected. J Clin Pathol. 2009;62(10):948–50.

    Article  CAS  PubMed  Google Scholar 

  229. Quintanilla-Martinez L, Slotta-Huspenina J, Koch I, Klier M, Hsi ED, de Leval L, et al. Differential diagnosis of cyclin D2+ mantle cell lymphoma based on fluorescence in situ hybridization and quantitative real-time-PCR. Haematologica. 2009;94(11):1595–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Sonoki T, Harder L, Horsman DE, Karran L, Taniguchi I, Willis TG, et al. Cyclin D3 is a target gene of t(6;14)(p21.1;q32.3) of mature B-cell malignancies. Blood. 2001;98(9):2837–44.

    Article  CAS  PubMed  Google Scholar 

  231. Cigudosa JC, Parsa NZ, Louie DC, Filippa DA, Jhanwar SC, Johansson B, et al. Cytogenetic analysis of 363 consecutively ascertained diffuse large B-cell lymphomas. Genes Chromosom Cancer. 1999;25(2):123–33.

    Article  CAS  PubMed  Google Scholar 

  232. Havelange V, Ameye G, Theate I, Callet-Bauchu E, Mugneret F, Michaux L, et al. Patterns of genomic aberrations suggest that Burkitt lymphomas with complex karyotype are distinct from other aggressive B-cell lymphomas with MYC rearrangement. Genes Chromosom Cancer. 2013;52(1):81–92.

    Article  CAS  PubMed  Google Scholar 

  233. Rao PH, Houldsworth J, Dyomina K, Parsa NZ, Cigudosa JC, Louie DC, et al. Chromosomal and gene amplification in diffuse large B-cell lymphoma. Blood. 1998;92(1):234–40.

    CAS  PubMed  Google Scholar 

  234. Kramer MH, Hermans J, Wijburg E, Philippo K, Geelen E, van Krieken JH, et al. Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. Blood. 1998;92(9):3152–62.

    CAS  PubMed  Google Scholar 

  235. Barrans SL, Carter I, Owen RG, Davies FE, Patmore RD, Haynes AP, et al. Germinal center phenotype and bcl-2 expression combined with the international prognostic index improves patient risk stratification in diffuse large B-cell lymphoma. Blood. 2002;99(4):1136–43.

    Article  CAS  PubMed  Google Scholar 

  236. Barrans SL, Evans PAS, O’Connor SJM, Kendall SJ, Owen RG, Haynes AP, et al. The t(14;18) is associated with germinal center-derived diffuse large B-cell lymphoma and is a strong predictor of outcome. Clin Cancer Res. 2003;9(6):2133–9.

    CAS  PubMed  Google Scholar 

  237. Iqbal J, Sanger WG, Horsman DE, Rosenwald A, Pickering DL, Dave B, et al. BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am J Pathol. 2004;165(1):159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Otto C, Scholtysik R, Schmitz R, Kreuz M, Becher C, Hummel M, et al. Novel IGH and MYC translocation partners in diffuse large B-cell lymphomas. Genes Chromosom Cancer. 2016;55(12):932–43.

    Article  CAS  PubMed  Google Scholar 

  239. Zech L, Gahrton G, Hammarstrom L, Juliusson G, Mellstedt H, Robert KH, et al. Inversion of chromosome 14 marks human T-cell chronic lymphocytic leukaemia. Nature. 1984;308(5962):858–60.

    Article  CAS  PubMed  Google Scholar 

  240. Beà S, Colomo L, López-Guillermo A, Salaverria I, Puig X, Pinyol M, et al. Clinicopathologic significance and prognostic value of chromosomal imbalances in diffuse large B-cell lymphomas. J Clin Oncol. 2004;22(17):3498–506.

    Article  PubMed  CAS  Google Scholar 

  241. Oudejans JJ, van Wieringen WN, Smeets SJ, Tijssen M, Vosse SJ, Meijer CJLM, et al. Identification of genes putatively involved in the pathogenesis of diffuse large B-cell lymphomas by integrative genomics. Genes Chromosom Cancer. 2009;48(3):250–60.

    Article  CAS  PubMed  Google Scholar 

  242. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Article  CAS  PubMed  Google Scholar 

  243. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47.

    Article  PubMed  Google Scholar 

  244. Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, Ott G, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82.

    Article  CAS  PubMed  Google Scholar 

  245. Guo Y, Takeuchi I, Karnan S, Miyata T, Ohshima K, Seto M. Array-comparative genomic hybridization profiling of immunohistochemical subgroups of diffuse large B-cell lymphoma shows distinct genomic alterations. Cancer Sci. 2014;105(4):481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Sheth A, de Melo VAS, Szydlo R, Macdonald DH, Reid AG, Wagner SD. Specific patterns of chromosomal gains and losses associate with t(3;14), t(8;14), and t(14;18) in diffuse large B-cell lymphoma. Cancer Genet Cytogenet. 2009;194(1):48–52.

    Article  CAS  PubMed  Google Scholar 

  247. Iqbal J, Neppalli VT, Wright G, Dave BJ, Horsman DE, Rosenwald A, et al. BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. J Clin Oncol. 2006;24(6):961–8.

    Article  CAS  PubMed  Google Scholar 

  248. Mounier N, Briere J, Gisselbrecht C, Emile JF, Lederlin P, Sebban C, et al. Rituximab plus CHOP (R-CHOP) overcomes bcl-2—associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL). Blood. 2003;101(11):4279–84.

    Article  CAS  PubMed  Google Scholar 

  249. Barrans S, Crouch S, Smith A, Turner K, Owen R, Patmore R, et al. Rearrangement of MYC is associated with poor prognosis in patients with diffuse large B-cell lymphoma treated in the era of rituximab. J Clin Oncol. 2010;28(20):3360–5.

    Article  CAS  PubMed  Google Scholar 

  250. Tagawa H, Suguro M, Tsuzuki S, Matsuo K, Karnan S, Ohshima K, et al. Comparison of genome profiles for identification of distinct subgroups of diffuse large B-cell lymphoma. Blood. 2005;106(5):1770–7.

    Article  CAS  PubMed  Google Scholar 

  251. Houldsworth J, Olshen AB, Cattoretti G, Donnelly GB, Teruya-Feldstein J, Qin J, et al. Relationship between REL amplification, REL function, and clinical and biologic features in diffuse large B-cell lymphomas. Blood. 2004;103(5):1862–8.

    Article  CAS  PubMed  Google Scholar 

  252. Monti S, Savage KJ, Kutok JL, Feuerhake F, Kurtin P, Mihm M, et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood. 2005;105(5):1851–61.

    Article  CAS  PubMed  Google Scholar 

  253. Chen W, Houldsworth J, Olshen AB, Nanjangud G, Chaganti S, Venkatraman ES, et al. Array comparative genomic hybridization reveals genomic copy number changes associated with outcome in diffuse large B-cell lymphomas. Blood. 2006;107(6):2477–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Lenz G, Wright GW, Emre NCT, Kohlhammer H, Dave SS, Davis RE, et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A. 2008;105(36):13520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Bea S, Zettl A, Wright G, Salaverria I, Jehn P, Moreno V, et al. Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival prediction. Blood. 2005;106(9):3183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Salaverria I, Martin-Guerrero I, Burkhardt B, Kreuz M, Zenz T, Oschlies I, et al. High resolution copy number analysis of IRF4 translocation-positive diffuse large B-cell and follicular lymphomas. Genes Chromosom Cancer. 2013;52(2):150–5.

    Article  CAS  PubMed  Google Scholar 

  257. Wlodarska I, Mecucci C, Stul M, Michaux L, Pittaluga S, Hernandez JM, et al. Fluorescence in situ hybridization identifies new chromosomal changes involving 3q27 in non-Hodgkin’s lymphomas with BCL6/LAZ3 rearrangement. Genes Chromosom Cancer. 1995;14(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  258. Akasaka T, Ueda C, Kurata M, Akasaka H, Yamabe H, Uchiyama T, et al. Nonimmunoglobulin (non-Ig)/BCL6 gene fusion in diffuse large B-cell lymphoma results in worse prognosis than Ig/BCL6. Blood. 2000;96(8):2907–9.

    CAS  PubMed  Google Scholar 

  259. De Paepe P, Achten R, Verhoef G, Wlodarska I, Stul M, Vanhentenrijk V, et al. Large cleaved and immunoblastic lymphoma may represent two distinct clinicopathologic entities within the group of diffuse large B-cell lymphomas. J Clin Oncol. 2005;23(28):7060–8.

    Article  PubMed  Google Scholar 

  260. Jarosova M, Kriegova E, Schneiderova P, Fillerova R, Prochazka V, Mikesova M, et al. A novel non-immunoglobulin (non-Ig)/BCL6 translocation in diffuse large B-cell lymphoma involving chromosome 10q11.21 loci and review on clinical consequences of BCL6 rearrangements. Pathol Oncol Res. 2016;22(2):233–43.

    Article  CAS  PubMed  Google Scholar 

  261. Offit K, Lo Coco F, Louie DC, Parsa NZ, Leung D, Portlock C, et al. Rearrangement of the bcl-6 gene as a prognostic marker in diffuse large-cell lymphoma. N Engl J Med. 1994;331(2):74–80.

    Article  CAS  PubMed  Google Scholar 

  262. Jerkeman M, Aman P, Cavallin-Stahl E, Torlakovic E, Akerman M, Mitelman F, et al. Prognostic implications of BCL6 rearrangement in uniformly treated patients with diffuse large B-cell lymphoma--a Nordic lymphoma group study. Int J Oncol. 2002;20(1):161–5.

    CAS  PubMed  Google Scholar 

  263. Bastard C, Deweindt C, Kerckaert JP, Lenormand B, Rossi A, Pezzella F, et al. LAZ3 rearrangements in non-Hodgkin’s lymphoma: correlation with histology, immunophenotype, karyotype, and clinical outcome in 217 patients. Blood. 1994;83(9):2423–7.

    CAS  PubMed  Google Scholar 

  264. Winter JN, Weller EA, Horning SJ, Krajewska M, Variakojis D, Habermann TM, et al. Prognostic significance of Bcl-6 protein expression in DLBCL treated with CHOP or R-CHOP: a prospective correlative study. Blood. 2006;107(11):4207–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Huang JZ, Sanger WG, Greiner TC, Staudt LM, Weisenburger DD, Pickering DL, et al. The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood. 2002;99(7):2285–90.

    Article  CAS  PubMed  Google Scholar 

  266. Obermann EC, Csato M, Dirnhofer S, Tzankov A. BCL2 gene aberration as an IPI-independent marker for poor outcome in non-germinal-centre diffuse large B cell lymphoma. J Clin Pathol. 2009;62(10):903–7.

    Article  CAS  PubMed  Google Scholar 

  267. Dierlamm J, Murga Penas EM, Bentink S, Wessendorf S, Berger H, Hummel M, et al. Gain of chromosome region 18q21 including the MALT1 gene is associated with the activated B-cell-like gene expression subtype and increased BCL2 gene dosage and protein expression in diffuse large B-cell lymphoma. Haematologica. 2008;93(5):688–96.

    Article  CAS  PubMed  Google Scholar 

  268. Jardin F, Jais J-P, Molina T-J, Parmentier F, Picquenot J-M, Ruminy P, et al. Diffuse large B-cell lymphomas with CDKN2A deletion have a distinct gene expression signature and a poor prognosis under R-CHOP treatment: a GELA study. Blood. 2010;116(7):1092–104.

    Article  CAS  PubMed  Google Scholar 

  269. Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TFE, et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354(23):2419–30.

    Article  CAS  PubMed  Google Scholar 

  270. Seegmiller AC, Garcia R, Huang R, Maleki A, Karandikar NJ, Chen W. Simple karyotype and bcl-6 expression predict a diagnosis of Burkitt lymphoma and better survival in IG-MYC rearranged high-grade B-cell lymphomas. Mod Pathol. 2010;23(7):909–20.

    Article  CAS  PubMed  Google Scholar 

  271. McClure RF, Remstein ED, Macon WR, Dewald GW, Habermann TM, Hoering A, et al. Adult B-cell lymphomas with burkitt-like morphology are phenotypically and genotypically heterogeneous with aggressive clinical behavior. Am J Surg Pathol. 2005;29(12):1652–60.

    Article  PubMed  Google Scholar 

  272. Klapper W, Stoecklein H, Zeynalova S, Ott G, Kosari F, Rosenwald A, et al. Structural aberrations affecting the MYC locus indicate a poor prognosis independent of clinical risk factors in diffuse large B-cell lymphomas treated within randomized trials of the German high-grade non-Hodgkin’s lymphoma study group (DSHNHL). Leukemia. 2008;22(12):2226–9.

    Article  CAS  PubMed  Google Scholar 

  273. Niitsu N, Okamoto M, Miura I, Hirano M. Clinical features and prognosis of de novo diffuse large B-cell lymphoma with t(14;18) and 8q24/c-MYC translocations. Leukemia. 2009;23(4):777–83.

    Article  CAS  PubMed  Google Scholar 

  274. Savage KJ, Johnson NA, Ben-Neriah S, Connors JM, Sehn LH, Farinha P, et al. MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood. 2009;114(17):3533–7.

    Article  CAS  PubMed  Google Scholar 

  275. Kobayashi T, Tsutsumi Y, Sakamoto N, Nagoshi H, Yamamoto-Sugitani M, Shimura Y, et al. Double-hit lymphomas constitute a highly aggressive subgroup in diffuse large B-cell lymphomas in the era of rituximab. Jpn J Clin Oncol. 2012;42(11):1035–42.

    Article  PubMed  Google Scholar 

  276. Visco C, Tzankov A, Xu-Monette ZY, Miranda RN, Tai YC, Li Y, et al. Patients with diffuse large B-cell lymphoma of germinal center origin with BCL2 translocations have poor outcome, irrespective of MYC status: a report from an international DLBCL rituximab-CHOP consortium program study. Haematologica. 2013;98(2):255–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Tomita N. BCL2 and MYC dual-hit lymphoma/leukemia. J Clin Exp Hematop. 2011;51(1):7–12.

    Article  PubMed  Google Scholar 

  278. Aukema SM, Siebert R, Schuuring E, van Imhoff GW, Kluin-Nelemans HC, Boerma EJ, et al. Double-hit B-cell lymphomas. Blood. 2011;117(8):2319–31.

    Article  CAS  PubMed  Google Scholar 

  279. Johnson NA, Savage KJ, Ludkovski O, Ben-Neriah S, Woods R, Steidl C, et al. Lymphomas with concurrent BCL2 and MYC translocations: the critical factors associated with survival. Blood. 2009;114(11):2273–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Clipson A, Barrans S, Zeng N, Crouch S, Grigoropoulos NF, Liu H, et al. The prognosis of MYC translocation positive diffuse large B-cell lymphoma depends on the second hit. J Pathol Clin Res. 2015;1(3):125–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma E-J, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med. 2006;354(23):2431–42.

    Article  CAS  PubMed  Google Scholar 

  282. Scott DW, Mungall KL, Ben-Neriah S, Rogic S, Morin RD, Slack GW, et al. TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin lymphoma. Blood. 2012;119(21):4949–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Rouhigharabaei L, Finalet Ferreiro J, Tousseyn T, van der Krogt JA, Put N, Haralambieva E, et al. Non-IG aberrations of FOXP1 in B-cell malignancies lead to an aberrant expression of N-truncated isoforms of FOXP1. PLoS One. 2014;9(1):e85851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  284. Nagel S, Leich E, Quentmeier H, Meyer C, Kaufmann M, Zaborski M, et al. Amplification at 11q23 targets protein kinase SIK2 in diffuse large B-cell lymphoma. Leuk Lymphoma. 2010;51(5):881–91.

    Article  CAS  PubMed  Google Scholar 

  285. Bonetti P, Testoni M, Scandurra M, Ponzoni M, Piva R, Mensah AA, et al. Deregulation of ETS1 and FLI1 contributes to the pathogenesis of diffuse large B-cell lymphoma. Blood. 2013;122(13):2233–41.

    Article  CAS  PubMed  Google Scholar 

  286. Kim S, Kim H, Kang H, Kim J, Eom H, Kim T, et al. Clinical significance of cytogenetic aberrations in bone marrow of patients with diffuse large B-cell lymphoma: prognostic significance and relevance to histologic involvement. J Hematol Oncol. 2013;6:76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Fiskvik I, Aamot HV, Delabie J, Smeland EB, Stokke T, Heim S, et al. Karyotyping of diffuse large B-cell lymphomas: loss of 17p is associated with poor patient outcome. Eur J Haematol. 2013;91(4):332–8.

    PubMed  Google Scholar 

  288. Scandurra M, Mian M, Greiner TC, Rancoita PM, De Campos CP, Chan WC, et al. Genomic lesions associated with a different clinical outcome in diffuse large B-cell lymphoma treated with R-CHOP-21. Br J Haematol. 2010;151(3):221–31.

    Article  PubMed  Google Scholar 

  289. Suguro M, Yoshida N, Umino A, Kato H, Tagawa H, Nakagawa M, et al. Clonal heterogeneity of lymphoid malignancies correlates with poor prognosis. Cancer Sci. 2014;105(7):897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Kaneko H, Shimura K, Horiike S, Kuroda J, Matsumoto Y, Yokota S, et al. Cytogenetic analysis of de novo CD5-positive diffuse large B-cell lymphoma. Asia Pac J Clin Oncol. 2011;7(4):346–50.

    Article  PubMed  Google Scholar 

  291. Tinguely M, Thies S, Frigerio S, Reineke T, Korol D, Zimmermann DR. IRF8 is associated with germinal center B-cell-like type of diffuse large B-cell lymphoma and exceptionally involved in translocation t(14;16)(q32.33;q24.1). Leuk Lymphoma. 2014;55(1):136–42.

    Article  CAS  PubMed  Google Scholar 

  292. Chen Y, Dave BJ, Zhu X, Chan WC, Iqbal J, Sanger WG, et al. Differences in the cytogenetic alteration profiles of diffuse large B-cell lymphoma among Chinese and American patients. Cancer Gene Ther. 2013;206(5):183–90.

    Article  CAS  Google Scholar 

  293. Zhao X, Fan R, Lin G, Wang X. Chromosome abnormalities in diffuse large B-cell lymphomas: analysis of 231 Chinese patients. Hematol Oncol. 2013;31(3):127–35.

    Article  PubMed  CAS  Google Scholar 

  294. La Starza R, Aventin A, Falzetti D, Stul M, Martelli MF, Falini B, et al. 14q+ chromosome marker in a T-cell-rich B-cell lymphoma. J Pathol. 1996;178(2):227–31.

    Article  PubMed  Google Scholar 

  295. de Leval L, Harris NL, Lampertz S, Herens C. T-cell/histiocyte-rich large B-cell lymphoma associated with a near-tetraploid karyotype and complex genetic abnormalities. APMIS. 2006;114(6):474–8.

    Article  PubMed  Google Scholar 

  296. Stamatoullas A, Picquenot J-M, Dumesnil C, Ruminy P, Penther D, Bertrand P, et al. Conventional cytogenetics of nodular lymphocyte-predominant Hodgkin’s lymphoma. Leukemia. 2007;21(9):2064–7.

    Article  CAS  PubMed  Google Scholar 

  297. Franke S, Wlodarska I, Maes B, Vandenberghe P, Achten R, Hagemeijer A, et al. Comparative genomic hybridization pattern distinguishes T-cell/histiocyte-rich B-cell lymphoma from nodular lymphocyte predominance Hodgkin’s lymphoma. Am J Pathol. 2002;161(5):1861–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Franke S, Wlodarska I, Maes B, Vandenberghe P, Delabie J, Hagemeijer A, et al. Lymphocyte predominance Hodgkin disease is characterized by recurrent genomic imbalances. Blood. 2001;97(6):1845–53.

    Article  CAS  PubMed  Google Scholar 

  299. Hartmann S, Doring C, Vucic E, Chan FC, Ennishi D, Tousseyn T, et al. Array comparative genomic hybridization reveals similarities between nodular lymphocyte predominant Hodgkin lymphoma and T cell/histiocyte rich large B cell lymphoma. Br J Haematol. 2015;169(3):415–22.

    Article  PubMed  Google Scholar 

  300. Montesinos-Rongen M, Zuhlke-Jenisch R, Gesk S, Martin-Subero JI, Schaller C, Van Roost D, et al. Interphase cytogenetic analysis of lymphoma-associated chromosomal breakpoints in primary diffuse large B-cell lymphomas of the central nervous system. J Neuropathol Exp Neurol. 2002;61(10):926–33.

    Article  CAS  PubMed  Google Scholar 

  301. Cady FM, O’Neill BP, Law ME, Decker PA, Kurtz DM, Giannini C, et al. Del(6)(q22) and BCL6 rearrangements in primary CNS lymphoma are indicators of an aggressive clinical course. J Clin Oncol. 2008;26(29):4814–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Schwindt H, Akasaka T, Zuhlke-Jenisch R, Hans V, Schaller C, Klapper W, et al. Chromosomal translocations fusing the BCL6 gene to different partner loci are recurrent in primary central nervous system lymphoma and may be associated with aberrant somatic hypermutation or defective class switch recombination. J Neuropathol Exp Neurol. 2006;65(8):776–82.

    Article  CAS  PubMed  Google Scholar 

  303. Montesinos-Rongen M, Akasaka T, Zuhlke-Jenisch R, Schaller C, Van Roost D, Wiestler OD, et al. Molecular characterization of BCL6 breakpoints in primary diffuse large B-cell lymphomas of the central nervous system identifies GAPD as novel translocation partner. Brain Pathol. 2003;13(4):534–8.

    Article  CAS  PubMed  Google Scholar 

  304. Weber T, Weber RG, Kaulich K, Actor B, Meyer-Puttlitz B, Lampel S, et al. Characteristic chromosomal imbalances in primary central nervous system lymphomas of the diffuse large B-cell type. Brain Pathol. 2000;10(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  305. Schwindt H, Vater I, Kreuz M, Montesinos-Rongen M, Brunn A, Richter J, et al. Chromosomal imbalances and partial uniparental disomies in primary central nervous system lymphoma. Leukemia. 2009;23(10):1875–84.

    Article  CAS  PubMed  Google Scholar 

  306. Jordanova ES, Riemersma SA, Philippo K, Giphart-Gassler M, Schuuring E, Kluin PM. Hemizygous deletions in the HLA region account for loss of heterozygosity in the majority of diffuse large B-cell lymphomas of the testis and the central nervous system. Genes Chromosom Cancer. 2002;35(1):38–48.

    Article  CAS  PubMed  Google Scholar 

  307. Riemersma SA, Oudejans JJ, Vonk MJ, Dreef EJ, Prins FA, Jansen PM, et al. High numbers of tumour-infiltrating activated cytotoxic T lymphocytes, and frequent loss of HLA class I and II expression, are features of aggressive B cell lymphomas of the brain and testis. J Pathol. 2005;206(3):328–36.

    Article  CAS  PubMed  Google Scholar 

  308. Booman M, Douwes J, Glas AM, Riemersma SA, Jordanova ES, Kok K, et al. Mechanisms and effects of loss of human leukocyte antigen class II expression in immune-privileged site-associated B-cell lymphoma. Clin Cancer Res. 2006;12(9):2698–705.

    Article  CAS  PubMed  Google Scholar 

  309. Booman M, Szuhai K, Rosenwald A, Hartmann E, Kluin-Nelemans H, de Jong D, et al. Genomic alterations and gene expression in primary diffuse large B-cell lymphomas of immune-privileged sites: the importance of apoptosis and immunomodulatory pathways. J Pathol. 2008;216(2):209–17.

    Article  CAS  PubMed  Google Scholar 

  310. List AF, Spier CM, Miller TP, Grogan TM. Deficient tumor-infiltrating T-lymphocyte response in malignant lymphoma: relationship to HLA expression and host immunocompetence. Leukemia. 1993;7(3):398–403.

    CAS  PubMed  Google Scholar 

  311. Rimsza LM, Roberts RA, Miller TP, Unger JM, LeBlanc M, Braziel RM, et al. Loss of MHC class II gene and protein expression in diffuse large B-cell lymphoma is related to decreased tumor immunosurveillance and poor patient survival regardless of other prognostic factors: a follow-up study from the leukemia and lymphoma molecular profiling project. Blood. 2004;103(11):4251–8.

    Article  CAS  PubMed  Google Scholar 

  312. Rickert CH, Dockhorn-Dworniczak B, Simon R, Paulus W. Chromosomal imbalances in primary lymphomas of the central nervous system. Am J Pathol. 1999;155(5):1445–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Chu LC, Eberhart CG, Grossman SA, Herman JG. Epigenetic silencing of multiple genes in primary CNS lymphoma. Int J Cancer. 2006;119(10):2487–91.

    Article  CAS  PubMed  Google Scholar 

  314. Courts C, Montesinos-Rongen M, Martin-Subero JI, Brunn A, Siemer D, Zuhlke-Jenisch R, et al. Transcriptional profiling of the nuclear factor-kappaB pathway identifies a subgroup of primary lymphoma of the central nervous system with low BCL10 expression. J Neuropathol Exp Neurol. 2007;66(3):230–7.

    Article  CAS  PubMed  Google Scholar 

  315. Cobbers JM, Wolter M, Reifenberger J, Ring GU, Jessen F, An HX, et al. Frequent inactivation of CDKN2A and rare mutation of TP53 in PCNSL. Brain Pathol. 1998;8(2):263–76.

    Article  CAS  PubMed  Google Scholar 

  316. Nakamura M, Sakaki T, Hashimoto H, Nakase H, Ishida E, Shimada K, et al. Frequent alterations of the p14(ARF) and p16(INK4a) genes in primary central nervous system lymphomas. Cancer Res. 2001;61(17):6335–9.

    CAS  PubMed  Google Scholar 

  317. McPhail ER, Law ME, Decker PA, O’Neill BP. Influence of 6q22-23 on overall survival in primary central nervous system lymphoma. Analysis of north central cancer treatment group trials 86 72 52, 93 73 51 and 96 73 51. Br J Haematol. 2011;154(1):146–50.

    Article  PubMed  PubMed Central  Google Scholar 

  318. Gonzalez-Aguilar A, Idbaih A, Boisselier B, Habbita N, Rossetto M, Laurenge A, et al. Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin Cancer Res. 2012;18(19):5203–11.

    Article  CAS  PubMed  Google Scholar 

  319. Fukumura K, Kawazu M, Kojima S, Ueno T, Sai E, Soda M, et al. Genomic characterization of primary central nervous system lymphoma. Acta Neuropathol. 2016;131(6):865–75.

    Article  CAS  PubMed  Google Scholar 

  320. Hallermann C, Kaune KM, Siebert R, Vermeer MH, Tensen CP, Willemze R, et al. Chromosomal aberration patterns differ in subtypes of primary cutaneous B cell lymphomas. J Invest Dermatol. 2004;122(6):1495–502.

    Article  CAS  PubMed  Google Scholar 

  321. Hallermann C, Kaune KM, Gesk S, Martin-Subero JI, Gunawan B, Griesinger F, et al. Molecular cytogenetic analysis of chromosomal breakpoints in the IGH, MYC, BCL6, and MALT1 gene loci in primary cutaneous B-cell lymphomas. J Invest Dermatol. 2004;123(1):213–9.

    Article  CAS  PubMed  Google Scholar 

  322. Giménez S, Costa C, Espinet B, Solé F, Pujol RM, Puigdecanet E, et al. Comparative genomic hybridization analysis of cutaneous large B-cell lymphomas. Exp Dermatol. 2005;14(12):883–90.

    Article  PubMed  Google Scholar 

  323. Dijkman R, Tensen CP, Jordanova ES, Knijnenburg J, Hoefnagel JJ, Mulder AA, et al. Array-based comparative genomic hybridization analysis reveals recurrent chromosomal alterations and prognostic parameters in primary cutaneous large B-cell lymphoma. J Clin Oncol. 2006;24(2):296–305.

    Article  CAS  PubMed  Google Scholar 

  324. Senff NJ, Zoutman WH, Vermeer MH, Assaf C, Berti E, Cerroni L, et al. Fine-mapping chromosomal loss at 9p21: correlation with prognosis in primary cutaneous diffuse large B-cell lymphoma, leg type. J Invest Dermatol. 2009;129(5):1149–55.

    Article  CAS  PubMed  Google Scholar 

  325. Espinet B, Garcia-Herrera A, Gallardo F, Baro C, Salgado R, Servitje O, et al. FOXP1 molecular cytogenetics and protein expression analyses in primary cutaneous large B cell lymphoma, leg-type. Histol Histopathol. 2011;26(2):213–21.

    CAS  PubMed  Google Scholar 

  326. Yoon H, Park S, Ju H, Ha SY, Sohn I, Jo J, et al. Integrated copy number and gene expression profiling analysis of Epstein-Barr virus-positive diffuse large B-cell lymphoma. Genes Chromosom Cancer. 2015;54(6):383–96.

    Article  CAS  PubMed  Google Scholar 

  327. Ohno H, Nishikori M, Haga H, Isoda K. Epstein-Barr virus-positive diffuse large B-cell lymphoma carrying a t(9;14)(p13;q32) translocation. Int J Hematol. 2009;89(5):704–8.

    Article  CAS  PubMed  Google Scholar 

  328. Joos S, Otaño-Joos MI, Ziegler S, Brüderlein S, du Manoir S, Bentz M, et al. Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood. 1996;87(4):1571–8.

    CAS  PubMed  Google Scholar 

  329. Scarpa A, Taruscio D, Scardoni M, Iosi F, Paradisi S, Ennas MG, et al. Nonrandom chromosomal imbalances in primary mediastinal B-cell lymphoma detected by arbitrarily primed PCR fingerprinting. Genes Chromosom Cancer. 1999;26(3):203–9.

    Article  CAS  PubMed  Google Scholar 

  330. Bentz M, Barth TF, Brüderlein S, Bock D, Schwerer MJ, Baudis M, et al. Gain of chromosome arm 9p is characteristic of primary mediastinal B-cell lymphoma (MBL): comprehensive molecular cytogenetic analysis and presentation of a novel MBL cell line. Genes Chromosom Cancer. 2001;30(4):393–401.

    Article  CAS  PubMed  Google Scholar 

  331. Yamamoto K, Okamura A, Inui Y, Yakushijin K, Kawakami F, Itoh T, et al. IGH@/BCL6 rearrangement on the der(3)t(3;14)(q27;q32) in primary mediastinal large B-cell lymphoma. Leuk Res. 2012;36(12):e218–21.

    Article  CAS  PubMed  Google Scholar 

  332. Palanisamy N, Abou-Elella AA, Chaganti SR, Houldsworth J, Offit K, Louie DC, et al. Similar patterns of genomic alterations characterize primary mediastinal large-B-cell lymphoma and diffuse large-B-cell lymphoma. Genes Chromosom Cancer. 2002;33(2):114–22.

    Article  CAS  PubMed  Google Scholar 

  333. Wessendorf S, Barth TFE, Viardot A, Mueller A, Kestler HA, Kohlhammer H, et al. Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH). Leukemia. 2007;21(12):2463–9.

    Article  CAS  PubMed  Google Scholar 

  334. Kimm LR, de Leeuw RJ, Savage KJ, Rosenwald A, Campo E, Delabie J, et al. Frequent occurrence of deletions in primary mediastinal B-cell lymphoma. Genes Chromosom Cancer. 2007;46(12):1090–7.

    Article  CAS  PubMed  Google Scholar 

  335. Weniger MA, Pulford K, Gesk S, Ehrlich S, Banham AH, Lyne L, et al. Gains of the proto-oncogene BCL11A and nuclear accumulation of BCL11A(XL) protein are frequent in primary mediastinal B-cell lymphoma. Leukemia. 2006;20(10):1880–2.

    Article  CAS  PubMed  Google Scholar 

  336. Weniger MA, Gesk S, Ehrlich S, Martin-Subero JI, Dyer MJS, Siebert R, et al. Gains of REL in primary mediastinal B-cell lymphoma coincide with nuclear accumulation of REL protein. Genes Chromosom Cancer. 2007;46(4):406–15.

    Article  CAS  PubMed  Google Scholar 

  337. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Meier C, Hoeller S, Bourgau C, Hirschmann P, Schwaller J, Went P, et al. Recurrent numerical aberrations of JAK2 and deregulation of the JAK2-STAT cascade in lymphomas. Mod Pathol. 2009;22(3):476–87.

    Article  CAS  PubMed  Google Scholar 

  339. Twa DD, Chan FC, Ben-Neriah S, Woolcock BW, Mottok A, Tan KL, et al. Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood. 2014;123(13):2062–5.

    Article  CAS  PubMed  Google Scholar 

  340. Melzner I, Bucur AJ, Brüderlein S, Dorsch K, Hasel C, Barth TFE, et al. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood. 2005;105(6):2535–42.

    Article  CAS  PubMed  Google Scholar 

  341. Weniger MA, Melzner I, Menz CK, Wegener S, Bucur AJ, Dorsch K, et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene. 2006;25(18):2679–84.

    Article  CAS  PubMed  Google Scholar 

  342. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Delsol G, Lamant L, Mariame B, Pulford K, Dastugue N, Brousset P, et al. A new subtype of large B-cell lymphoma expressing the ALK kinase and lacking the 2; 5 translocation. Blood. 1997;89(5):1483–90.

    CAS  PubMed  Google Scholar 

  344. Adam P, Katzenberger T, Seeberger H, Gattenlöhner S, Wolf J, Steinlein C, et al. A case of a diffuse large B-cell lymphoma of plasmablastic type associated with the t(2;5)(p23;q35) chromosome translocation. Am J Surg Pathol. 2003;27(11):1473–6.

    Article  PubMed  Google Scholar 

  345. Onciu M, Behm FG, Downing JR, Shurtleff SA, Raimondi SC, Ma Z, et al. ALK-positive plasmablastic B-cell lymphoma with expression of the NPM-ALK fusion transcript: report of 2 cases. Blood. 2003;102(7):2642–4.

    Article  CAS  PubMed  Google Scholar 

  346. Van Roosbroeck K, Cools J, Dierickx D, Thomas J, Vandenberghe P, Stul M, et al. ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica. 2010;95(3):509–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  347. Chikatsu N, Kojima H, Suzukawa K, Shinagawa A, Nagasawa T, Ozawa H, et al. ALK+, CD30-, CD20- large B-cell lymphoma containing anaplastic lymphoma kinase (ALK) fused to clathrin heavy chain gene (CLTC). Mod Pathol. 2003;16(8):828–32.

    Article  PubMed  Google Scholar 

  348. De Paepe P, Baens M, van Krieken H, Verhasselt B, Stul M, Simons A, et al. ALK activation by the CLTC-ALK fusion is a recurrent event in large B-cell lymphoma. Blood. 2003;102(7):2638–41.

    Article  PubMed  CAS  Google Scholar 

  349. Gascoyne RD, Lamant L, Martin-Subero JI, Lestou VS, Harris NL, Muller-Hermelink HK, et al. ALK-positive diffuse large B-cell lymphoma is associated with Clathrin-ALK rearrangements: report of 6 cases. Blood. 2003;102(7):2568–73.

    Article  CAS  PubMed  Google Scholar 

  350. McManus DT, Catherwood MA, Carey PD, Cuthbert RJ, Alexander HD. ALK-positive diffuse large B-cell lymphoma of the stomach associated with a clathrin-ALK rearrangement. Hum Pathol. 2004;35(10):1285–8.

    Article  CAS  PubMed  Google Scholar 

  351. Gesk S, Gascoyne RD, Schnitzer B, Bakshi N, Janssen D, Klapper W, et al. ALK-positive diffuse large B-cell lymphoma with ALK-Clathrin fusion belongs to the spectrum of pediatric lymphomas. Leukemia. 2005;19(10):1839–40.

    Article  CAS  PubMed  Google Scholar 

  352. Isimbaldi G, Bandiera L, d’Amore ESG, Conter V, Milani M, Mussolin L, et al. ALK-positive plasmablastic B-cell lymphoma with the clathrin-ALK gene rearrangement. Pediatr Blood Cancer. 2006;46(3):390–1.

    Article  PubMed  Google Scholar 

  353. Bedwell C, Rowe D, Moulton D, Jones G, Bown N, Bacon CM. Cytogenetically complex SEC31A-ALK fusions are recurrent in ALK-positive large B-cell lymphomas. Haematologica. 2011;96(2):343–6.

    Article  CAS  PubMed  Google Scholar 

  354. Shi M, Miron PM, Hutchinson L, Woda BA, Nath R, Cerny J, et al. Anaplastic lymphoma kinase-positive large B-cell lymphoma with complex karyotype and novel ALK gene rearrangements. Hum Pathol. 2011;42(10):1562–7.

    Article  CAS  PubMed  Google Scholar 

  355. Boerma EG, Siebert R, Kluin PM, Baudis M. Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of todays knowledge. Leukemia. 2009;23(2):225–34.

    Article  CAS  PubMed  Google Scholar 

  356. Leucci E, Cocco M, Onnis A, De Falco G, van Cleef P, Bellan C, et al. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation. J Pathol. 2008;216(4):440–50.

    Article  CAS  PubMed  Google Scholar 

  357. Salaverria I, Zettl A, Beà S, Hartmann EM, Dave SS, Wright GW, et al. Chromosomal alterations detected by comparative genomic hybridization in subgroups of gene expression-defined Burkitt’s lymphoma. Haematologica. 2008;93(9):1327–34.

    Article  PubMed  Google Scholar 

  358. Lundin C, Hjorth L, Behrendtz M, Ehinger M, Biloglav A, Johansson B. Submicroscopic genomic imbalances in Burkitt lymphomas/leukemias: association with age and further evidence that 8q24/MYC translocations are not sufficient for leukemogenesis. Genes Chromosom Cancer. 2013;52(4):370–7.

    Article  CAS  PubMed  Google Scholar 

  359. Havelange V, Pepermans X, Ameye G, Theate I, Callet-Bauchu E, Barin C, et al. Genetic differences between paediatric and adult Burkitt lymphomas. Br J Haematol. 2016;173(1):137–44.

    Article  CAS  PubMed  Google Scholar 

  360. Aukema SM, Theil L, Rohde M, Bauer B, Bradtke J, Burkhardt B, et al. Sequential karyotyping in Burkitt lymphoma reveals a linear clonal evolution with increase in karyotype complexity and a high frequency of recurrent secondary aberrations. Br J Haematol. 2015;170(6):814–25.

    Article  CAS  PubMed  Google Scholar 

  361. Garcia JL, Hernandez JM, Gutierrez NC, Flores T, Gonzalez D, Calasanz MJ, et al. Abnormalities on 1q and 7q are associated with poor outcome in sporadic Burkitt’s lymphoma. A cytogenetic and comparative genomic hybridization study. Leukemia. 2003;17(10):2016–24.

    Article  CAS  PubMed  Google Scholar 

  362. Lones MA, Sanger WG, Le Beau MM, Heerema NA, Sposto R, Perkins SL, et al. Chromosome abnormalities may correlate with prognosis in Burkitt/Burkitt-like lymphomas of children and adolescents: a report from Children’s cancer group study CCG-E08. J Pediatr Hematol Oncol. 2004;26(3):169–78.

    Article  PubMed  Google Scholar 

  363. Poirel HA, Cairo MS, Heerema NA, Swansbury J, Aupérin A, Launay E, et al. Specific cytogenetic abnormalities are associated with a significantly inferior outcome in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Leukemia. 2009;23(2):323–31.

    Article  CAS  PubMed  Google Scholar 

  364. Nelson M, Perkins SL, Dave BJ, Coccia PF, Bridge JA, Lyden ER, et al. An increased frequency of 13q deletions detected by fluorescence in situ hybridization and its impact on survival in children and adolescents with Burkitt lymphoma: results from the Children’s oncology group study CCG-5961. Br J Haematol. 2010;148(4):600–10.

    Article  PubMed  Google Scholar 

  365. Forero-Castro M, Robledo C, Lumbreras E, Benito R, Hernandez-Sanchez JM, Hernandez-Sanchez M, et al. The presence of genomic imbalances is associated with poor outcome in patients with burkitt lymphoma treated with dose-intensive chemotherapy including rituximab. Br J Haematol. 2016;172(3):428–38.

    Article  CAS  PubMed  Google Scholar 

  366. De Jong D, Voetdijk BM, Beverstock GC, van Ommen GJ, Willemze R, Kluin PM. Activation of the c-myc oncogene in a precursor-B-cell blast crisis of follicular lymphoma, presenting as composite lymphoma. N Engl J Med. 1988;318(21):1373–8.

    Article  PubMed  Google Scholar 

  367. Au WY, Gascoyne RD, Viswanatha DS, Skinnider BF, Connors JM, Klasa RJ, et al. Concurrent chromosomal alterations at 3q27, 8q24 and 18q21 in B-cell lymphomas. Br J Haematol. 1999;105(2):437–40.

    Article  CAS  PubMed  Google Scholar 

  368. Snuderl M, Kolman OK, Chen Y-B, Hsu JJ, Ackerman AM, Dal Cin P, et al. B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and pathologic features distinct from Burkitt lymphoma and diffuse large B-cell lymphoma. Am J Surg Pathol. 2010;34(3):327–40.

    Article  PubMed  PubMed Central  Google Scholar 

  369. Nakayama S, Yokote T, Iwaki K, Takayama A, Tsuji M, Hanafusa T. Triple-hit B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma associated with a novel complex karyotype including t(2;3)(q21;q27), t(8;14)(q24;q32) and t(14;18)(q32;q21). Br J Haematol. 2013;160(5):569.

    Article  PubMed  Google Scholar 

  370. Motllo C, Grau J, Junca J, Ruiz N, Mate JL, Orna E, et al. Translocation (3;8)(q27;q24) in two cases of triple hit lymphoma. Cancer Genet Cytogenet. 2010;203(2):328–32.

    Article  CAS  PubMed  Google Scholar 

  371. Macpherson N, Lesack D, Klasa R, Horsman D, Connors JM, Barnett M, et al. Small noncleaved, non-Burkitt’s (Burkit-like) lymphoma: cytogenetics predict outcome and reflect clinical presentation. J Clin Oncol. 1999;17(5):1558–67.

    Article  CAS  PubMed  Google Scholar 

  372. Kanungo A, Medeiros LJ, Abruzzo LV, Lin P. Lymphoid neoplasms associated with concurrent t(14;18) and 8q24/c-MYC translocation generally have a poor prognosis. Mod Pathol. 2006;19(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  373. Mead GM, Barrans SL, Qian W, Walewski J, Radford JA, Wolf M, et al. A prospective clinicopathologic study of dose-modified CODOX-M/IVAC in patients with sporadic Burkitt lymphoma defined using cytogenetic and immunophenotypic criteria (MRC/NCRI LY10 trial). Blood. 2008;112(6):2248–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Pienkowska-Grela B, Rymkiewicz G, Grygalewicz B, Woroniecka R, Krawczyk P, Czyz-Domanska K, et al. Partial trisomy 11, dup(11)(q23q13), as a defect characterizing lymphomas with Burkitt pathomorphology without MYC gene rearrangement. Med Oncol. 2010;28(4):1589–95.

    Article  PubMed  Google Scholar 

  375. Salaverria I, Martin-Guerrero I, Wagener R, Kreuz M, Kohler CW, Richter J, et al. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood. 2014;123(8):1187–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Eberle FC, Salaverria I, Steidl C, Summers TA Jr, Pittaluga S, Neriah SB, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011;24(12):1586–97.

    Article  CAS  PubMed  Google Scholar 

  377. Brito-Babapulle V, Pomfret M, Matutes E, Catovsky D. Cytogenetic studies on prolymphocytic leukemia. II. T cell prolymphocytic leukemia. Blood. 1987;70(4):926–31.

    CAS  PubMed  Google Scholar 

  378. Matutes E, Brito-Babapulle V, Swansbury J, Ellis J, Morilla R, Dearden C, et al. Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood. 1991;78(12):3269–74.

    CAS  PubMed  Google Scholar 

  379. Maljaei SH, Brito-Babapulle V, Hiorns LR, Catovsky D. Abnormalities of chromosomes 8, 11, 14, and X in T-prolymphocytic leukemia studied by fluorescence in situ hybridization. Cancer Genet Cytogenet. 1998;103(2):110–6.

    Article  CAS  PubMed  Google Scholar 

  380. Soulier J, Pierron G, Vecchione D, Garand R, Brizard F, Sigaux F, et al. A complex pattern of recurrent chromosomal losses and gains in T-cell prolymphocytic leukemia. Genes Chromosom Cancer. 2001;31(3):248–54.

    Article  CAS  PubMed  Google Scholar 

  381. Stern MH, Soulier J, Rosenzwajg M, Nakahara K, Canki-Klain N, Aurias A, et al. MTCP-1: a novel gene on the human chromosome Xq28 translocated to the T cell receptor alpha/delta locus in mature T cell proliferations. Oncogene. 1993;8(9):2475–83.

    CAS  PubMed  Google Scholar 

  382. Taylor AM, Metcalfe JA, Thick J, Mak YF. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87(2):423–38.

    CAS  PubMed  Google Scholar 

  383. Sorour A, Brito-Babapulle V, Smedley D, Yuille M, Catovsky D. Unusual breakpoint distribution of 8p abnormalities in T-prolymphocytic leukemia: a study with YACS mapping to 8p11-p12. Cancer Genet Cytogenet. 2000;121(2):128–32.

    Article  CAS  PubMed  Google Scholar 

  384. Stengel A, Kern W, Zenger M, Perglerova K, Schnittger S, Haferlach T, et al. Genetic characterization of T-PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker. Genes Chromosom Cancer. 2016;55(1):82–94.

    Article  CAS  PubMed  Google Scholar 

  385. Stilgenbauer S, Schaffner C, Litterst A, Liebisch P, Gilad S, Bar-Shira A, et al. Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med. 1997;3(10):1155–9.

    Article  CAS  PubMed  Google Scholar 

  386. Vorechovsky I, Luo L, Dyer MJ, Catovsky D, Amlot PL, Yaxley JC, et al. Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cell leukaemia. Nat Genet. 1997;17(1):96–9.

    Article  CAS  PubMed  Google Scholar 

  387. Stoppa-Lyonnet D, Soulier J, Lauge A, Dastot H, Garand R, Sigaux F, et al. Inactivation of the ATM gene in T-cell prolymphocytic leukemias. Blood. 1998;91(10):3920–6.

    CAS  PubMed  Google Scholar 

  388. Yuille MA, Coignet LJ, Abraham SM, Yaqub F, Luo L, Matutes E, et al. ATM is usually rearranged in T-cell prolymphocytic leukaemia. Oncogene. 1998;16(6):789–96.

    Article  CAS  PubMed  Google Scholar 

  389. Salomon-Nguyen F, Brizard F, Le Coniat M, Radford I, Berger R, Brizard A. Abnormalities of the short arm of chromosome 12 in T cell prolymphocytic leukemia. Leukemia. 1998;12(6):972–5.

    Article  CAS  PubMed  Google Scholar 

  390. Brito-Babapulle V, Hamoudi R, Matutes E, Watson S, Kaczmarek P, Maljaie H, et al. p53 allele deletion and protein accumulation occurs in the absence of p53 gene mutation in T-prolymphocytic leukaemia and Sezary syndrome. Br J Haematol. 2000;110(1):180–7.

    Article  CAS  PubMed  Google Scholar 

  391. Hetet G, Dastot H, Baens M, Brizard A, Sigaux F, Grandchamp B, et al. Recurrent molecular deletion of the 12p13 region, centromeric to ETV6/TEL, in T-cell prolymphocytic leukemia. Hematol J. 2000;1(1):42–7.

    Article  CAS  PubMed  Google Scholar 

  392. Brito-Babapulle V, Baou M, Matutes E, Morilla R, Atkinson S, Catovsky D. Deletions of D13S25, D13S319 and RB-1 mapping to 13q14.3 in T-cell prolymphocytic leukaemia. Br J Haematol. 2001;114(2):327–32.

    Article  CAS  PubMed  Google Scholar 

  393. Durig J, Bug S, Klein-Hitpass L, Boes T, Jons T, Martin-Subero JI, et al. Combined single nucleotide polymorphism-based genomic mapping and global gene expression profiling identifies novel chromosomal imbalances, mechanisms and candidate genes important in the pathogenesis of T-cell prolymphocytic leukemia with inv(14)(q11q32). Leukemia. 2007;21(10):2153–63.

    Article  CAS  PubMed  Google Scholar 

  394. Bug S, Durig J, Oyen F, Klein-Hitpass L, Martin-Subero JI, Harder L, et al. Recurrent loss, but lack of mutations, of the SMARCB1 tumor suppressor gene in T-cell prolymphocytic leukemia with TCL1A-TCRAD juxtaposition. Cancer Genet Cytogenet. 2009;192(1):44–7.

    Article  CAS  PubMed  Google Scholar 

  395. Costa D, Queralt R, Aymerich M, Carrio A, Rozman M, Vallespi T, et al. High levels of chromosomal imbalances in typical and small-cell variants of T-cell prolymphocytic leukemia. Cancer Genet Cytogenet. 2003;147(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  396. Bergmann AK, Schneppenheim S, Seifert M, Betts MJ, Haake A, Lopez C, et al. Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia. Genes Chromosom Cancer. 2014;53(4):309–16.

    Article  CAS  PubMed  Google Scholar 

  397. Kawahara S, Sasaki M, Isobe Y, Ando J, Noguchi M, Koike M, et al. Clinical analysis of 52 patients with granular lymphocyte proliferative disorder (GLPD) showed frequent anemia in indolent T-cell GLPD in Japan. Eur J Haematol. 2009;82(4):308–14.

    Article  CAS  PubMed  Google Scholar 

  398. Dhodapkar MV, Li CY, Lust JA, Tefferi A, Phyliky RL. Clinical spectrum of clonal proliferations of T-large granular lymphocytes: a T-cell clonopathy of undetermined significance? Blood. 1994;84(5):1620–7.

    CAS  PubMed  Google Scholar 

  399. Man C, Au WY, Pang A, Kwong YL. Deletion 6q as a recurrent chromosomal aberration in T-cell large granular lymphocyte leukemia. Cancer Genet Cytogenet. 2002;139(1):71–4.

    Article  CAS  PubMed  Google Scholar 

  400. Wong KF, Chan JCW, Liu HSY, Man C, Kwong YL. Chromosomal abnormalities in T-cell large granular lymphocyte leukaemia: report of two cases and review of the literature. Br J Haematol. 2002;116(3):598–600.

    Article  CAS  PubMed  Google Scholar 

  401. Alekshun TJ, Tao J, Sokol L. Aggressive T-cell large granular lymphocyte leukemia: a case report and review of the literature. Am J Hematol. 2007;82(6):481–5.

    Article  PubMed  Google Scholar 

  402. Gentile TC, Uner AH, Hutchison RE, Wright J, Ben-Ezra J, Russell EC, et al. CD3+, CD56+ aggressive variant of large granular lymphocyte leukemia. Blood. 1994;84(7):2315–21.

    CAS  PubMed  Google Scholar 

  403. Macon WR, Williams ME, Greer JP, Hammer RD, Glick AD, Collins RD, et al. Natural killer-like T-cell lymphomas: aggressive lymphomas of T-large granular lymphocytes. Blood. 1996;87(4):1474–83.

    CAS  PubMed  Google Scholar 

  404. Tordjman R, Macintyre E, Emile JF, Valensi F, Ribrag V, Burtin ML, et al. Aggressive acute CD3+, CD56- T cell large granular lymphocyte leukemia with two stages of maturation arrest. Leukemia. 1996;10(9):1514–9.

    CAS  PubMed  Google Scholar 

  405. Passetto Falcao R, Pinto Simoes B, Garcia AB, Fonseca BA, Terra Filho J. Aggressive variant of morphologically typical T large granular lymphocyte leukemia/lymphoma lacking NK cell markers. Acta Haematol. 2000;104(2–3):110–4.

    Article  CAS  PubMed  Google Scholar 

  406. Zhang L, Ramchandren R, Papenhausen P, Loughran TP, Sokol L. Transformed aggressive gammadelta-variant T-cell large granular lymphocytic leukemia with acquired copy neutral loss of heterozygosity at 17q11.2q25.3 and additional aberrations. Eur J Haematol. 2014;93(3):260–4.

    Article  CAS  PubMed  Google Scholar 

  407. Oshimi K, Yamada O, Kaneko T, Nishinarita S, Iizuka Y, Urabe A, et al. Laboratory findings and clinical courses of 33 patients with granular lymphocyte-proliferative disorders. Leukemia. 1993;7(6):782–8.

    CAS  PubMed  Google Scholar 

  408. Tefferi A, Li CY, Witzig TE, Dhodapkar MV, Okuno SH, Phyliky RL. Chronic natural killer cell lymphocytosis: a descriptive clinical study. Blood. 1994;84(8):2721–5.

    CAS  PubMed  Google Scholar 

  409. Rabbani GR, Phyliky RL, Tefferi A. A long-term study of patients with chronic natural killer cell lymphocytosis. Br J Haematol. 1999;106(4):960–6.

    Article  CAS  PubMed  Google Scholar 

  410. Ohno Y, Amakawa R, Fukuhara S, Huang CR, Kamesaki H, Amano H, et al. Acute transformation of chronic large granular lymphocyte leukemia associated with additional chromosome abnormality. Cancer. 1989;64(1):63–7.

    Article  CAS  PubMed  Google Scholar 

  411. Wong KF, Zhang YM, Chan JK. Cytogenetic abnormalities in natural killer cell lymphoma/leukaemia—is there a consistent pattern? Leuk Lymphoma. 1999;34(3–4):241–50.

    Article  CAS  PubMed  Google Scholar 

  412. Tien HF, Su IJ, Tang JL, Liu MC, Lee FY, Chen YC, et al. Clonal chromosomal abnormalities as direct evidence for clonality in nasal T/natural killer cell lymphomas. Br J Haematol. 1997;97(3):621–5.

    Article  CAS  PubMed  Google Scholar 

  413. Wong KF, Chan JK, Kwong YL. Identification of del(6)(q21q25) as a recurring chromosomal abnormality in putative NK cell lymphoma/leukaemia. Br J Haematol. 1997;98(4):922–6.

    Article  CAS  PubMed  Google Scholar 

  414. Suzuki R, Suzumiya J, Nakamura S, Aoki S, Notoya A, Ozaki S, et al. Aggressive natural killer-cell leukemia revisited: large granular lymphocyte leukemia of cytotoxic NK cells. Leukemia. 2004;18(4):763–70.

    Article  CAS  PubMed  Google Scholar 

  415. Ryder J, Wang X, Bao L, Gross SA, Hua F, Irons RD. Aggressive natural killer cell leukemia: report of a Chinese series and review of the literature. Int J Hematol. 2007;85(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  416. Yonescu R, Hristov AC, Ahmad A, Overby A, Thomas GH, Griffin CA. Cytogenetic characterization of natural killer cell leukemia. Cancer Genet Cytogenet. 2008;183(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  417. Wong N, Wong KF, Chan JK, Johnson PJ. Chromosomal translocations are common in natural killer-cell lymphoma/leukemia as shown by spectral karyotyping. Hum Pathol. 2000;31(6):771–4.

    Article  CAS  PubMed  Google Scholar 

  418. Siu LL, Wong KF, Chan JK, Kwong YL. Comparative genomic hybridization analysis of natural killer cell lymphoma/leukemia. Recognition of consistent patterns of genetic alterations. Am J Pathol. 1999;155(5):1419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Siu LL, Chan V, Chan JK, Wong KF, Liang R, Kwong YL. Consistent patterns of allelic loss in natural killer cell lymphoma. Am J Pathol. 2000;157(6):1803–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Nakashima Y, Tagawa H, Suzuki R, Karnan S, Karube K, Ohshima K, et al. Genome-wide array-based comparative genomic hybridization of natural killer cell lymphoma/leukemia: different genomic alteration patterns of aggressive NK-cell leukemia and extranodal Nk/T-cell lymphoma, nasal type. Genes Chromosom Cancer. 2005;44(3):247–55.

    Article  CAS  PubMed  Google Scholar 

  421. Tsukasaki K, Hermine O, Bazarbachi A, Ratner L, Ramos JC, Harrington W, et al. Definition, prognostic factors, treatment, and response criteria of adult T-cell leukemia-lymphoma: a proposal from an international consensus meeting. J Clin Oncol. 2009;27(3):453–9.

    Article  PubMed  PubMed Central  Google Scholar 

  422. Kamada N, Sakurai M, Miyamoto K, Sanada I, Sadamori N, Fukuhara S, et al. Chromosome abnormalities in adult T-cell leukemia/lymphoma: a karyotype review committee report. Cancer Res. 1992;52(6):1481–93.

    CAS  PubMed  Google Scholar 

  423. Hatta Y, Yamada Y, Tomonaga M, Said JW, Miyosi I, Koeffler HP. Allelotype analysis of adult T-cell leukemia. Blood. 1998;92(6):2113–7.

    CAS  PubMed  Google Scholar 

  424. Itoyama T, Chaganti RS, Yamada Y, Tsukasaki K, Atogami S, Nakamura H, et al. Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area. Nagasaki Blood. 2001;97(11):3612–20.

    Article  CAS  PubMed  Google Scholar 

  425. Chen C-Y, Yao M, Tang J-L, Tsay W, Wang C-C, Chou W-C, et al. Chromosomal abnormalities of 200 Chinese patients with non-Hodgkin’s lymphoma in Taiwan: with special reference to T-cell lymphoma. Ann Oncol. 2004;15(7):1091–6.

    Article  PubMed  Google Scholar 

  426. Haider S, Hayakawa K, Itoyama T, Sadamori N, Kurosawa N, Isobe M. TCR variable gene involvement in chromosome inversion between 14q11 and 14q24 in adult T-cell leukemia. J Hum Genet. 2006;51(4):326–34.

    Article  CAS  PubMed  Google Scholar 

  427. Tsukasaki K, Krebs J, Nagai K, Tomonaga M, Koeffler HP, Bartram CR, et al. Comparative genomic hybridization analysis in adult T-cell leukemia/lymphoma: correlation with clinical course. Blood. 2001;97(12):3875–81.

    Article  CAS  PubMed  Google Scholar 

  428. Ariyama Y, Mori T, Shinomiya T, Sakabe T, Fukuda Y, Kanamaru A, et al. Chromosomal imbalances in adult T-cell leukemia revealed by comparative genomic hybridization: gains at 14q32 and 2p16-22 in cell lines. J Hum Genet. 1999;44(6):357–63.

    Article  CAS  PubMed  Google Scholar 

  429. Oshiro A, Tagawa H, Ohshima K, Karube K, Uike N, Tashiro Y, et al. Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma. Blood. 2006;107(11):4500–7.

    Article  CAS  PubMed  Google Scholar 

  430. Hatta Y, Hirama T, Miller CW, Yamada Y, Tomonaga M, Koeffler HP. Homozygous deletions of the p15 (MTS2) and p16 (CDKN2/MTS1) genes in adult T-cell leukemia. Blood. 1995;85(10):2699–704.

    CAS  PubMed  Google Scholar 

  431. Yamada Y, Hatta Y, Murata K, Sugawara K, Ikeda S, Mine M, et al. Deletions of p15 and/or p16 genes as a poor-prognosis factor in adult T-cell leukemia. J Clin Oncol. 1997;15(5):1778–85.

    Article  CAS  PubMed  Google Scholar 

  432. Takasaki Y, Yamada Y, Sugahara K, Hayashi T, Dateki N, Harasawa H, et al. Interruption of p16 gene expression in adult T-cell leukaemia/lymphoma: clinical correlation. Br J Haematol. 2003;122(2):253–9.

    Article  CAS  PubMed  Google Scholar 

  433. Cesarman E, Chadburn A, Inghirami G, Gaidano G, Knowles DM. Structural and functional analysis of oncogenes and tumor suppressor genes in adult T-cell leukemia/lymphoma shows frequent p53 mutations. Blood. 1992;80(12):3205–16.

    CAS  PubMed  Google Scholar 

  434. Sakashita A, Hattori T, Miller CW, Suzushima H, Asou N, Takatsuki K, et al. Mutations of the p53 gene in adult T-cell leukemia. Blood. 1992;79(2):477–80.

    CAS  PubMed  Google Scholar 

  435. Nishimura S, Asou N, Suzushima H, Okubo T, Fujimoto T, Osato M, et al. p53 gene mutation and loss of heterozygosity are associated with increased risk of disease progression in adult T cell leukemia. Leukemia. 1995;9(4):598–604.

    CAS  PubMed  Google Scholar 

  436. Tawara M, Hogerzeil SJ, Yamada Y, Takasaki Y, Soda H, Hasegawa H, et al. Impact of p53 aberration on the progression of adult T-cell leukemia/lymphoma. Cancer Lett. 2006;234(2):249–55.

    Article  CAS  PubMed  Google Scholar 

  437. Fujimoto R, Ozawa T, Itoyama T, Sadamori N, Kurosawa N, Isobe M. HELIOS-BCL11B fusion gene involvement in a t(2;14)(q34;q32) in an adult T-cell leukemia patient. Cancer Gene Ther. 2012;205(7–8):356–64.

    Article  CAS  Google Scholar 

  438. Kurosawa N, Fujimoto R, Ozawa T, Itoyama T, Sadamori N, Isobe M. Reduced level of the BCL11B protein is associated with adult T-cell leukemia/lymphoma. PLoS One. 2013;8(1):e55147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Miyata T, Yonekura K, Utsunomiya A, Kanekura T, Nakamura S, Seto M. Cutaneous type adult T-cell leukemia/lymphoma is a characteristic subtype and includes erythema/papule and nodule/tumor subgroups. Int J Cancer. 2010;126(6):1521–8.

    CAS  PubMed  Google Scholar 

  440. Nakagawa M, Nakagawa-Oshiro A, Karnan S, Tagawa H, Utsunomiya A, Nakamura S, et al. Array comparative genomic hybridization analysis of PTCL-U reveals a distinct subgroup with genetic alterations similar to lymphoma-type adult T-cell leukemia/lymphoma. Clin Cancer Res. 2009;15(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  441. Feldman AL, Law M, Grogg KL, Thorland EC, Fink S, Kurtin PJ, et al. Incidence of TCR and TCL1 gene translocations and isochromosome 7q in peripheral T-cell lymphomas using fluorescence in situ hybridization. Am J Clin Pathol. 2008;130(2):178–85.

    Article  PubMed  PubMed Central  Google Scholar 

  442. Ko YH, Choi KE, Han JH, Kim JM, Ree HJ. Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. Cytometry. 2001;46(2):85–91.

    Article  CAS  PubMed  Google Scholar 

  443. Iqbal J, Kucuk C, Deleeuw RJ, Srivastava G, Tam W, Geng H, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia. 2009;23(6):1139–51.

    Article  CAS  PubMed  Google Scholar 

  444. Huang Y, de Reyniès A, de Leval L, Ghazi B, Martin-Garcia N, Travert M, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood. 2010;115(6):1226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  445. Berti E, Recalcati S, Girgenti V, Fanoni D, Venegoni L, Vezzoli P. Cutaneous extranodal NK/T-cell lymphoma: a clinicopathologic study of five caucasian cases with array-based comparative genomic hybridization. Blood. 2010;116(2):165–70.

    Article  CAS  PubMed  Google Scholar 

  446. Sun L, Li M, Huang X, Xu J, Gao Z, Liu C. High-resolution genome-wide analysis identified recurrent genetic alterations in NK/T-cell lymphoma, nasal type, which are associated with disease progression. Med Oncol. 2014;31(7):71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  447. Ott G, Katzenberger T, Siebert R, DeCoteau JF, Fletcher JA, Knoll JH, et al. Chromosomal abnormalities in nodal and extranodal CD30+ anaplastic large cell lymphomas: infrequent detection of the t(2;5) in extranodal lymphomas. Genes Chromosom Cancer. 1998;22(2):114–21.

    Article  CAS  PubMed  Google Scholar 

  448. Zettl A, Ott G, Makulik A, Katzenberger T, Starostik P, Eichler T, et al. Chromosomal gains at 9q characterize enteropathy-type T-cell lymphoma. Am J Pathol. 2002;161(5):1635–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  449. Verkarre V, Romana S-P, Cellier C, Asnafi V, Mention J-J, Barbe U, et al. Recurrent partial trisomy 1q22-q44 in clonal intraepithelial lymphocytes in refractory celiac sprue. Gastroenterology. 2003;125(1):40–6.

    Article  PubMed  Google Scholar 

  450. Leich E, Haralambieva E, Zettl A, Chott A, Rüdiger T, Höller S, et al. Tissue microarray-based screening for chromosomal breakpoints affecting the T-cell receptor gene loci in mature T-cell lymphomas. J Pathol. 2007;213(1):99–105.

    Article  CAS  PubMed  Google Scholar 

  451. Deleeuw RJ, Zettl A, Klinker E, Haralambieva E, Trottier M, Chari R, et al. Whole-genome analysis and HLA genotyping of enteropathy-type T-cell lymphoma reveals 2 distinct lymphoma subtypes. Gastroenterology. 2007;132(5):1902–11.

    Article  CAS  PubMed  Google Scholar 

  452. Macon WR, Levy NB, Kurtin PJ, Salhany KE, Elkhalifa MY, Casey TT, et al. Hepatosplenic alphabeta T-cell lymphomas: a report of 14 cases and comparison with hepatosplenic gammadelta T-cell lymphomas. Am J Surg Pathol. 2001;25(3):285–96.

    Article  CAS  PubMed  Google Scholar 

  453. Wang CC, Tien HF, Lin MT, Su IJ, Wang CH, Chuang SM, et al. Consistent presence of isochromosome 7q in hepatosplenic T gamma/delta lymphoma: a new cytogenetic-clinicopathologic entity. Genes Chromosom Cancer. 1995;12(3):161–4.

    Article  CAS  PubMed  Google Scholar 

  454. Jonveaux P, Daniel MT, Martel V, Maarek O, Berger R. Isochromosome 7q and trisomy 8 are consistent primary, non-random chromosomal abnormalities associated with hepatosplenic T gamma/delta lymphoma. Leukemia. 1996;10(9):1453–5.

    CAS  PubMed  Google Scholar 

  455. Belhadj K, Reyes F, Farcet J-P, Tilly H, Bastard C, Angonin R, et al. Hepatosplenic gammadelta T-cell lymphoma is a rare clinicopathologic entity with poor outcome: report on a series of 21 patients. Blood. 2003;102(13):4261–9.

    Article  CAS  PubMed  Google Scholar 

  456. Travert M, Huang Y, de Leval L, Martin-Garcia N, Delfau-Larue MH, Berger F, et al. Molecular features of hepatosplenic T-cell lymphoma unravels potential novel therapeutic targets. Blood. 2012;119(24):5795–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  457. Yabe M, Medeiros LJ, Tang G, Wang SA, Ahmed S, Nieto Y, et al. Prognostic factors of Hepatosplenic T-cell lymphoma: clinicopathologic study of 28 cases. Am J Surg Pathol. 2016;40(5):676–88.

    Article  PubMed  Google Scholar 

  458. Shetty S, Mansoor A, Roland B. Ring chromosome 7 with amplification of 7q sequences in a pediatric case of hepatosplenic T-cell lymphoma. Cancer Genet Cytogenet. 2006;167(2):161–3.

    Article  CAS  PubMed  Google Scholar 

  459. Tamaska J, Adam E, Kozma A, Gopcsa L, Andrikovics H, Tordai A, et al. Hepatosplenic gammadelta T-cell lymphoma with ring chromosome 7, an isochromosome 7q equivalent clonal chromosomal aberration. Virchows Arch. 2006;449(4):479–83.

    Article  PubMed  Google Scholar 

  460. Patkar N, Nair S, Alex AA, Parihar M, Manipadam MT, Arora N, et al. Clinicopathological features of hepatosplenic T cell lymphoma: a single centre experience from India. Leuk Lymphoma. 2012;53(4):609–15.

    Article  CAS  PubMed  Google Scholar 

  461. Alonsozana EL, Stamberg J, Kumar D, Jaffe ES, Medeiros LJ, Frantz C, et al. Isochromosome 7q: the primary cytogenetic abnormality in hepatosplenic gammadelta T cell lymphoma. Leukemia. 1997;11(8):1367–72.

    Article  CAS  PubMed  Google Scholar 

  462. Wlodarska I, Martin-Garcia N, Achten R, De Wolf-Peeters C, Pauwels P, Tulliez M, et al. Fluorescence in situ hybridization study of chromosome 7 aberrations in hepatosplenic T-cell lymphoma: isochromosome 7q as a common abnormality accumulating in forms with features of cytologic progression. Genes Chromosom Cancer. 2002;33(3):243–51.

    Article  CAS  PubMed  Google Scholar 

  463. Finalet Ferreiro J, Rouhigharabaei L, Urbankova H, van der Krogt JA, Michaux L, Shetty S, et al. Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma. PLoS One. 2014;9(7):e102977.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  464. Weidmann E. Hepatosplenic T cell lymphoma. A review on 45 cases since the first report describing the disease as a distinct lymphoma entity in 1990. Leukemia. 2000;14(6):991–7.

    Article  CAS  PubMed  Google Scholar 

  465. Salhany KE, Feldman M, Peritt D, Nowell PC. Cytotoxic T-lymphocyte differentiation and cytogenetic alterations in gammadelta hepatosplenic T-cell lymphoma and posttransplant lymphoproliferative disorders. Blood. 1997;89(9):3490–1.

    CAS  PubMed  Google Scholar 

  466. Schlegelberger B, Himmler A, Godde E, Grote W, Feller AC, Lennert K. Cytogenetic findings in peripheral T-cell lymphomas as a basis for distinguishing low-grade and high-grade lymphomas. Blood. 1994;83(2):505–11.

    CAS  PubMed  Google Scholar 

  467. Thangavelu M, Finn WG, Yelavarthi KK, Roenigk HH Jr, Samuelson E, Peterson L, et al. Recurring structural chromosome abnormalities in peripheral blood lymphocytes of patients with mycosis fungoides/Sezary syndrome. Blood. 1997;89(9):3371–7.

    CAS  PubMed  Google Scholar 

  468. Espinet B, Salido M, Pujol RM, Florensa L, Gallardo F, Domingo A, et al. Genetic characterization of Sezary’s syndrome by conventional cytogenetics and cross-species color banding fluorescent in situhybridization. Haematologica. 2004;89(2):165–73.

    CAS  PubMed  Google Scholar 

  469. Batista DA, Vonderheid EC, Hawkins A, Morsberger L, Long P, Murphy KM, et al. Multicolor fluorescence in situ hybridization (SKY) in mycosis fungoides and Sezary syndrome: search for recurrent chromosome abnormalities. Genes Chromosom Cancer. 2006;45(4):383–91.

    Article  CAS  PubMed  Google Scholar 

  470. Katona TM, O’Malley DP, Cheng L, Hiatt KM, Wang M, Anagnostou JJ, et al. Loss of heterozygosity analysis identifies genetic abnormalities in mycosis fungoides and specific loci associated with disease progression. Am J Surg Pathol. 2007;31(10):1552–6.

    Article  PubMed  Google Scholar 

  471. Vermeer MH, van Doorn R, Dijkman R, Mao X, Whittaker S, van Voorst Vader PC, et al. Novel and highly recurrent chromosomal alterations in Sezary syndrome. Cancer Res. 2008;68(8):2689–98.

    Article  CAS  PubMed  Google Scholar 

  472. van Doorn R, van Kester MS, Dijkman R, Vermeer MH, Mulder AA, Szuhai K, et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome. Blood. 2009;113(1):127–36.

    Article  PubMed  CAS  Google Scholar 

  473. Mao X, Orchard G, Lillington DM, Russell-Jones R, Young BD, Whittaker SJ. Amplification and overexpression of JUNB is associated with primary cutaneous T-cell lymphomas. Blood. 2003;101(4):1513–9.

    Article  CAS  PubMed  Google Scholar 

  474. Salgado R, Servitje O, Gallardo F, Vermeer MH, Ortiz-Romero PL, Karpova MB, et al. Oligonucleotide array-CGH identifies genomic subgroups and prognostic markers for tumor stage mycosis fungoides. J Invest Dermatol. 2010;130(4):1126–35.

    Article  CAS  PubMed  Google Scholar 

  475. Wain EM, Mitchell TJ, Russell-Jones R, Whittaker SJ. Fine mapping of chromosome 10q deletions in mycosis fungoides and sezary syndrome: identification of two discrete regions of deletion at 10q23.33-24.1 and 10q24.33-25.1. Genes Chromosom Cancer. 2005;42(2):184–92.

    Article  CAS  PubMed  Google Scholar 

  476. Barba G, Matteucci C, Girolomoni G, Brandimarte L, Varasano E, Martelli MF, et al. Comparative genomic hybridization identifies 17q11.2 approximately q12 duplication as an early event in cutaneous T-cell lymphomas. Cancer Genet Cytogenet. 2008;184(1):48–51.

    Article  CAS  PubMed  Google Scholar 

  477. Utikal J, Poenitz N, Gratchev A, Klemke CD, Nashan D, Tuting T, et al. Additional her 2/neu gene copies in patients with Sezary syndrome. Leuk Res. 2006;30(6):755–60.

    Article  CAS  PubMed  Google Scholar 

  478. Karenko L, Hahtola S, Paivinen S, Karhu R, Syrja S, Kahkonen M, et al. Primary cutaneous T-cell lymphomas show a deletion or translocation affecting NAV3, the human UNC-53 homologue. Cancer Res. 2005;65(18):8101–10.

    Article  CAS  PubMed  Google Scholar 

  479. Marty M, Prochazkova M, Laharanne E, Chevret E, Longy M, Jouary T, et al. Primary cutaneous T-cell lymphomas do not show specific NAV3 gene deletion or translocation. J Invest Dermatol. 2008;128(10):2458–66.

    Article  CAS  PubMed  Google Scholar 

  480. Salgado R, Gallardo F, Servitje O, Estrach T, Garcia-Muret MP, Romagosa V, et al. Absence of TCR loci chromosomal translocations in cutaneous T-cell lymphomas. Cancer Gene Ther. 2011;204(7):405–9.

    Article  CAS  Google Scholar 

  481. Ungewickell A, Bhaduri A, Rios E, Reuter J, Lee CS, Mah A, et al. Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat Genet. 2015;47(9):1056–60.

    Article  CAS  PubMed  Google Scholar 

  482. Sekulic A, Liang WS, Tembe W, Izatt T, Kruglyak S, Kiefer JA, et al. Personalized treatment of Sezary syndrome by targeting a novel CTLA4:CD28 fusion. Mol Genet Genomic Med. 2015;3(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  483. Nelson M, Horsman DE, Weisenburger DD, Gascoyne RD, Dave BJ, Loberiza FR, et al. Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma. Br J Haematol. 2008;141(4):461–9.

    Article  CAS  PubMed  Google Scholar 

  484. Hartmann S, Gesk S, Scholtysik R, Kreuz M, Bug S, Vater I, et al. High resolution SNP array genomic profiling of peripheral T cell lymphomas, not otherwise specified, identifies a subgroup with chromosomal aberrations affecting the REL locus. Br J Haematol. 2010;148(3):402–12.

    Article  PubMed  Google Scholar 

  485. Zettl A, Rudiger T, Konrad MA, Chott A, Simonitsch-Klupp I, Sonnen R, et al. Genomic profiling of peripheral T-cell lymphoma, unspecified, and anaplastic large T-cell lymphoma delineates novel recurrent chromosomal alterations. Am J Pathol. 2004;164(5):1837–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  486. Nagel S, Leich E, Quentmeier H, Meyer C, Kaufmann M, Drexler HG, et al. Amplification at 7q22 targets cyclin-dependent kinase 6 in T-cell lymphoma. Leukemia. 2008;22(2):387–92.

    Article  CAS  PubMed  Google Scholar 

  487. Yoshida N, Tsuzuki S, Karube K, Takahara T, Suguro M, Miyoshi H, et al. STX11 functions as a novel tumor suppressor gene in peripheral T-cell lymphomas. Cancer Sci. 2015;106(10):1455–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  488. Fujiwara SI, Yamashita Y, Nakamura N, Choi YL, Ueno T, Watanabe H, et al. High-resolution analysis of chromosome copy number alterations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified, with single nucleotide polymorphism-typing microarrays. Leukemia. 2008;22(10):1891–8.

    Article  CAS  PubMed  Google Scholar 

  489. Feldman AL, Law M, Remstein ED, Macon WR, Erickson LA, Grogg KL, et al. Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lymphomas. Leukemia. 2009;23(3):574–80.

    Article  CAS  PubMed  Google Scholar 

  490. Kim KE, Woo KS, Kim KH, Oh SY, Kim HJ, Rha SH, et al. Peripheral T-cell lymphoma initially suspected with a single lymphoid aggregate and t(4;16)(q26;p13.3) on bone marrow. Leuk Res. 2009;33(1):188–91.

    Article  CAS  PubMed  Google Scholar 

  491. Somja J, Bisig B, Bonnet C, Herens C, Siebert R, de Leval L. Peripheral T-cell lymphoma with t(6;14)(p25;q11.2) translocation presenting with massive splenomegaly. Virchows Arch. 2014;464(6):735–41.

    PubMed  Google Scholar 

  492. Mathas S, Jöhrens K, Joos S, Lietz A, Hummel F, Janz M, et al. Elevated NF-kappaB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood. 2005;106(13):4287–93.

    Article  CAS  PubMed  Google Scholar 

  493. Almire C, Bertrand P, Ruminy P, Maingonnat C, Wlodarska I, Martin-Subero JI, et al. PVRL2 is translocated to the TRA@ locus in t(14;19)(q11;q13)-positive peripheral T-cell lymphomas. Genes Chromosom Cancer. 2007;46(11):1011–8.

    Article  CAS  PubMed  Google Scholar 

  494. Shin SY, Jang S, Park CJ, Chi HS, Lee KH, Huh J, et al. A rare case of Lennert’s type peripheral T-cell lymphoma with t(14;19)(q11.2;q13.3). Int J Lab Hematol. 2012;34(3):328–32.

    Article  CAS  PubMed  Google Scholar 

  495. Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia. 2006;20(2):313–8.

    Article  CAS  PubMed  Google Scholar 

  496. Feldman AL, Sun DX, Law ME, Novak AJ, Attygalle AD, Thorland EC, et al. Overexpression of Syk tyrosine kinase in peripheral T-cell lymphomas. Leukemia. 2008;22(6):1139–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  497. Attygalle AD, Feldman AL, Dogan A. ITK/SYK translocation in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 2013;37(9):1456–7.

    Article  PubMed  Google Scholar 

  498. Huang Y, Moreau A, Dupuis J, Streubel B, Petit B, Le Gouill S, et al. Peripheral T-cell lymphomas with a follicular growth pattern are derived from follicular helper T cells (TFH) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am J Surg Pathol. 2009;33(5):682–90.

    Article  PubMed  PubMed Central  Google Scholar 

  499. Liang PI, Chang ST, Lin MY, Hsieh YC, Chu PY, Chen CJ, et al. Angioimmunoblastic T-cell lymphoma in Taiwan shows a frequent gain of ITK gene. Int J Clin Exp Pathol. 2014;7(9):6097–107.

    PubMed  PubMed Central  Google Scholar 

  500. Yoo HY, Kim P, Kim WS, Lee SH, Kim S, Kang SY, et al. Author reply to comment on: frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma, by Yoo et al. Haematologica. 2016;101(6):e271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  501. Gong Q, Wang C, Rohr J, Feldman AL, Chan WC, McKeithan TW. Comment on: frequent CTLA4-CD28 gene fusion in diverse types of T-cell lymphoma, by Yoo et al. Haematologica. 2016;101(6):e269–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  502. Lepretre S, Buchonnet G, Stamatoullas A, Lenain P, Duval C, d’Anjou J, et al. Chromosome abnormalities in peripheral T-cell lymphoma. Cancer Genet Cytogenet. 2000;117(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  503. Thorns C, Bastian B, Pinkel D, Roydasgupta R, Fridlyand J, Merz H, et al. Chromosomal aberrations in angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma unspecified: a matrix-based CGH approach. Genes Chromosom Cancer. 2007;46(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  504. Schlegelberger B, Zwingers T, Hohenadel K, Henne-Bruns D, Schmitz N, Haferlach T, et al. Significance of cytogenetic findings for the clinical outcome in patients with T-cell lymphoma of angioimmunoblastic lymphadenopathy type. J Clin Oncol. 1996;14(2):593–9.

    Article  CAS  PubMed  Google Scholar 

  505. Gesk S, Martin-Subero JI, Harder L, Luhmann B, Schlegelberger B, Calasanz MJ, et al. Molecular cytogenetic detection of chromosomal breakpoints in T-cell receptor gene loci. Leukemia. 2003;17(4):738–45.

    Article  CAS  PubMed  Google Scholar 

  506. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1994;263(5151):1281–4.

    Article  CAS  PubMed  Google Scholar 

  507. Hernandez L, Pinyol M, Hernandez S, Bea S, Pulford K, Rosenwald A, et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood. 1999;94(9):3265–8.

    CAS  PubMed  Google Scholar 

  508. Lamant L, Dastugue N, Pulford K, Delsol G, Mariame B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood. 1999;93(9):3088–95.

    CAS  PubMed  Google Scholar 

  509. Touriol C, Greenland C, Lamant L, Pulford K, Bernard F, Rousset T, et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood. 2000;95(10):3204–7.

    CAS  PubMed  Google Scholar 

  510. Trinei M, Lanfrancone L, Campo E, Pulford K, Mason DY, Pelicci PG, et al. A new variant anaplastic lymphoma kinase (ALK)-fusion protein (ATIC-ALK) in a case of ALK-positive anaplastic large cell lymphoma. Cancer Res. 2000;60(4):793–8.

    CAS  PubMed  Google Scholar 

  511. Meech SJ, McGavran L, Odom LF, Liang X, Meltesen L, Gump J, et al. Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomyosin 4--anaplastic lymphoma kinase gene fusion. Blood. 2001;98(4):1209–16.

    Article  CAS  PubMed  Google Scholar 

  512. Tort F, Pinyol M, Pulford K, Roncador G, Hernandez L, Nayach I, et al. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Investig. 2001;81(3):419–26.

    Article  CAS  PubMed  Google Scholar 

  513. Hernandez L, Bea S, Bellosillo B, Pinyol M, Falini B, Carbone A, et al. Diversity of genomic breakpoints in TFG-ALK translocations in anaplastic large cell lymphomas: identification of a new TFG-ALK(XL) chimeric gene with transforming activity. Am J Pathol. 2002;160(4):1487–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  514. Lamant L, Gascoyne RD, Duplantier MM, Armstrong F, Raghab A, Chhanabhai M, et al. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosom Cancer. 2003;37(4):427–32.

    Article  CAS  PubMed  Google Scholar 

  515. Lones MA, Heerema NA, Le Beau MM, Perkins SL, Kadin ME, Kjeldsberg CR, et al. Complex secondary chromosome abnormalities in advanced stage anaplastic large cell lymphoma of children and adolescents: a report from CCG-E08. Cancer Genet Cytogenet. 2006;171(2):89–96.

    Article  CAS  PubMed  Google Scholar 

  516. Monaco S, Tsao L, Murty VV, Nandula SV, Donovan V, Oesterheld J, et al. Pediatric ALK+ anaplastic large cell lymphoma with t(3;8)(q26.2;q24) translocation and c-myc rearrangement terminating in a leukemic phase. Am J Hematol. 2007;82(1):59–64.

    Article  PubMed  Google Scholar 

  517. Moritake H, Shimonodan H, Marutsuka K, Kamimura S, Kojima H, Nunoi H. C-MYC rearrangement may induce an aggressive phenotype in anaplastic lymphoma kinase positive anaplastic large cell lymphoma: identification of a novel fusion gene ALO17/C-MYC. Am J Hematol. 2011;86(1):75–8.

    Article  CAS  PubMed  Google Scholar 

  518. Youssif C, Goldenbogen J, Hamoudi R, Carreras J, Viskaduraki M, Cui YX, et al. Genomic profiling of pediatric ALK-positive anaplastic large cell lymphoma: a Children’s cancer and Leukaemia group study. Genes Chromosom Cancer. 2009;48(11):1018–26.

    Article  CAS  PubMed  Google Scholar 

  519. Salaverria I, Bea S, Lopez-Guillermo A, Lespinet V, Pinyol M, Burkhardt B, et al. Genomic profiling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas. Br J Haematol. 2008;140(5):516–26.

    Article  PubMed  Google Scholar 

  520. Feldman AL, Dogan A, Smith DI, Law ME, Ansell SM, Johnson SH, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood. 2011;117(3):915–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  521. King RL, Dao LN, McPhail ED, Jaffe ES, Said J, Swerdlow SH, et al. Morphologic features of ALK-negative anaplastic large cell lymphomas with DUSP22 rearrangements. Am J Surg Pathol. 2016;40(1):36–43.

    Article  PubMed  PubMed Central  Google Scholar 

  522. Vasmatzis G, Johnson SH, Knudson RA, Ketterling RP, Braggio E, Fonseca R, et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120(11):2280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  523. Parrilla Castellar ER, Jaffe ES, Said JW, Swerdlow SH, Ketterling RP, Knudson RA, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124(9):1473–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  524. Kansal R, Sait SN, Block AW, Ward PM, Kelly FL, Cheney RT, et al. Extra copies of chromosome 2 are a recurring aberration in ALK-negative lymphomas with anaplastic morphology. Mod Pathol. 2005;18(2):235–43.

    Article  CAS  PubMed  Google Scholar 

  525. Pedersen RK, Sorensen AG, Pedersen NT, Schmidt KG, Kerndrup GB. Chromosome aberrations in adult Hodgkin disease in a Danish population-based study. Cancer Genet Cytogenet. 1999;110(2):128–32.

    Article  CAS  PubMed  Google Scholar 

  526. Tilly H, Bastard C, Delastre T, Duval C, Bizet M, Lenormand B, et al. Cytogenetic studies in untreated Hodgkin’s disease. Blood. 1991;77(6):1298–304.

    CAS  PubMed  Google Scholar 

  527. Ladanyi M, Parsa NZ, Offit K, Wachtel MS, Filippa DA, Jhanwar SC. Clonal cytogenetic abnormalities in Hodgkin’s disease. Genes Chromosom Cancer. 1991;3(4):294–9.

    Article  CAS  PubMed  Google Scholar 

  528. Schouten HC, Sanger WG, Duggan M, Weisenburger DD, MacLennan KA, Armitage JO. Chromosomal abnormalities in Hodgkin’s disease. Blood. 1989;73(8):2149–54.

    CAS  PubMed  Google Scholar 

  529. Thangavelu M, Le Beau MM. Chromosomal abnormalities in Hodgkin’s disease. Hematol Oncol Clin North Am. 1989;3(2):221–36.

    CAS  PubMed  Google Scholar 

  530. Dohner H, Bloomfield CD, Frizzera G, Frestedt J, Arthur DC. Recurring chromosome abnormalities in Hodgkin’s disease. Genes Chromosom Cancer. 1992;5(4):392–8.

    Article  CAS  PubMed  Google Scholar 

  531. Schlegelberger B, Weber-Matthiesen K, Himmler A, Bartels H, Sonnen R, Kuse R, et al. Cytogenetic findings and results of combined immunophenotyping and karyotyping in Hodgkin’s disease. Leukemia. 1994;8(1):72–80.

    CAS  PubMed  Google Scholar 

  532. Falzetti D, Crescenzi B, Matteuci C, Falini B, Martelli MF, Van Den Berghe H, et al. Genomic instability and recurrent breakpoints are main cytogenetic findings in Hodgkin’s disease. Haematologica. 1999;84(4):298–305.

    CAS  PubMed  Google Scholar 

  533. Weber-Matthiesen K, Winkemann M, Muller-Hermelink A, Schlegelberger B, Grote W. Simultaneous fluorescence immunophenotyping and interphase cytogenetics: a contribution to the characterization of tumor cells. J Histochem Cytochem. 1992;40(2):171–5.

    Article  CAS  PubMed  Google Scholar 

  534. Ohshima K, Ishiguro M, Ohgami A, Sugihara M, Haraoka S, Suzumiya J, et al. Genetic analysis of sorted Hodgkin and reed-Sternberg cells using comparative genomic hybridization. Int J Cancer. 1999;82(2):250–5.

    Article  CAS  PubMed  Google Scholar 

  535. Joos S, Kupper M, Ohl S, von Bonin F, Mechtersheimer G, Bentz M, et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 2000;60(3):549–52.

    CAS  PubMed  Google Scholar 

  536. Van Roosbroeck K, Ferreiro JF, Tousseyn T, van der Krogt JA, Michaux L, Pienkowska-Grela B, et al. Genomic alterations of the JAK2 and PDL loci occur in a broad spectrum of lymphoid malignancies. Genes Chromosom Cancer. 2016;55(5):428–41.

    Article  PubMed  CAS  Google Scholar 

  537. Martin-Subero JI, Gesk S, Harder L, Sonoki T, Tucker PW, Schlegelberger B, et al. Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood. 2002;99(4):1474–7.

    Article  CAS  PubMed  Google Scholar 

  538. Kupper M, Joos S, von Bonin F, Daus H, Pfreundschuh M, Lichter P, et al. MDM2 gene amplification and lack of p53 point mutations in Hodgkin and reed-Sternberg cells: results from single-cell polymerase chain reaction and molecular cytogenetic studies. Br J Haematol. 2001;112(3):768–75.

    Article  CAS  PubMed  Google Scholar 

  539. Joos S, Granzow M, Holtgreve-Grez H, Siebert R, Harder L, Martin-Subero JI, et al. Hodgkin’s lymphoma cell lines are characterized by frequent aberrations on chromosomes 2p and 9p including REL and JAK2. Int J Cancer. 2003;103(4):489–95.

    Article  CAS  PubMed  Google Scholar 

  540. Chui DT, Hammond D, Baird M, Shield L, Jackson R, Jarrett RF. Classical Hodgkin lymphoma is associated with frequent gains of 17q. Genes Chromosom Cancer. 2003;38(2):126–36.

    Article  CAS  PubMed  Google Scholar 

  541. Salipante SJ, Adey A, Thomas A, Lee C, Liu YJ, Kumar A, et al. Recurrent somatic loss of TNFRSF14 in classical Hodgkin lymphoma. Genes Chromosom Cancer. 2016;55(3):278–87.

    Article  CAS  PubMed  Google Scholar 

  542. Martin-Subero JI, Wlodarska I, Bastard C, Picquenot J-M, Höppner J, Giefing M, et al. Chromosomal rearrangements involving the BCL3 locus are recurrent in classical Hodgkin and peripheral T-cell lymphoma. Blood. 2006;108(1):401–2; author reply 02–3

    Article  CAS  PubMed  Google Scholar 

  543. Poppema S, Kaleta J, Hepperle B. Chromosomal abnormalities in patients with Hodgkin’s disease: evidence for frequent involvement of the 14q chromosomal region but infrequent bcl-2 gene rearrangement in reed-Sternberg cells. J Natl Cancer Inst. 1992;84(23):1789–93.

    Article  CAS  PubMed  Google Scholar 

  544. Martin-Subero JI, Klapper W, Sotnikova A, Callet-Bauchu E, Harder L, Bastard C, et al. Chromosomal breakpoints affecting immunoglobulin loci are recurrent in Hodgkin and reed-Sternberg cells of classical Hodgkin lymphoma. Cancer Res. 2006;66(21):10332–8.

    Article  CAS  PubMed  Google Scholar 

  545. Van Roosbroeck K, Cox L, Tousseyn T, Lahortiga I, Gielen O, Cauwelier B, et al. JAK2 rearrangements, including the novel SEC31A-JAK2 fusion, are recurrent in classical Hodgkin lymphoma. Blood. 2011;117(15):4056–64.

    Article  PubMed  CAS  Google Scholar 

  546. Yoshida M, Ichikawa A, Miyoshi H, Takeuchi M, Kimura Y, Nino D, et al. High frequency of t(14;18) in Hodgkin’s lymphoma associated with follicular lymphoma. Pathol Int. 2012;62(8):518–24.

    Article  PubMed  Google Scholar 

  547. Otto C, Giefing M, Massow A, Vater I, Gesk S, Schlesner M, et al. Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br J Haematol. 2012;157(6):702–8.

    Article  CAS  PubMed  Google Scholar 

  548. Hartmann S, Martin-Subero JI, Gesk S, Hüsken J, Giefing M, Nagel I, et al. Detection of genomic imbalances in microdissected Hodgkin and reed-Sternberg cells of classical Hodgkin’s lymphoma by array-based comparative genomic hybridization. Haematologica. 2008;93(9):1318–26.

    Article  CAS  PubMed  Google Scholar 

  549. Steidl C, Telenius A, Shah SP, Farinha P, Barclay L, Boyle M, et al. Genome-wide copy number analysis of Hodgkin reed-Sternberg cells identifies recurrent imbalances with correlations to treatment outcome. Blood. 2010;116(3):418–27.

    Article  CAS  PubMed  Google Scholar 

  550. Slavutsky I, de Vinuesa ML, Estevez ME, Sen L, de Salum SB. Cytogenetic and immunologic phenotype findings in Hodgkin’s disease. Cancer Genet Cytogenet. 1985;16(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  551. Hansmann ML, Godde-Salz E, Hui PK, Muller-Hermelink HK, Lennert K. Cytogenetic findings in nodular paragranuloma (Hodgkin’s disease with lymphocytic predominance; nodular) and in progressively transformed germinal centers. Cancer Genet Cytogenet. 1986;21(4):319–25.

    Article  CAS  PubMed  Google Scholar 

  552. Reeves BR, Nash R, Lawler SD, Fisher C, Treleaven JG, Wiltshaw E. Serial cytogenetic studies showing persistence of original clone in Hodgkin’s disease. Cancer Genet Cytogenet. 1990;50(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  553. Parsa NZ, Gaidano G, Mukherjee AB, Hauptschein RS, Lenoir G, Dalla-Favera R, et al. Cytogenetic and molecular analysis of 6q deletions in Burkitt’s lymphoma cell lines. Genes Chromosom Cancer. 1994;9(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  554. Wlodarska I, Nooyen P, Maes B, Martin-Subero JI, Siebert R, Pauwels P, et al. Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood. 2003;101(2):706–10.

    Article  CAS  PubMed  Google Scholar 

  555. Renné C, Martín-Subero JI, Hansmann M-L, Siebert R. Molecular cytogenetic analyses of immunoglobulin loci in nodular lymphocyte predominant Hodgkin’s lymphoma reveal a recurrent IGH-BCL6 juxtaposition. J Mol Diagn. 2005;7(3):352–6.

    Article  PubMed  PubMed Central  Google Scholar 

  556. Wlodarska I, Stul M, De Wolf-Peeters C, Hagemeijer A. Heterogeneity of BCL6 rearrangements in nodular lymphocyte predominant Hodgkin’s lymphoma. Haematologica. 2004;89(8):965–72.

    CAS  PubMed  Google Scholar 

  557. Bakhirev AG, Vasef MA, Zhang QY, Reichard KK, Czuchlewski DR. Fluorescence immunophenotyping and interphase cytogenetics (FICTION) detects BCL6 abnormalities, including gene amplification, in most cases of nodular lymphocyte-predominant Hodgkin lymphoma. Arch Pathol Lab Med. 2014;138(4):538–42.

    Article  PubMed  Google Scholar 

  558. Schraders M, Pfundt R, Straatman HM, Janssen IM, van Kessel AG, Schoenmakers EF, et al. Novel chromosomal imbalances in mantle cell lymphoma detected by genome-wide array-based comparative genomic hybridization. Blood. 2005;105(4):1686–93.

    Article  CAS  PubMed  Google Scholar 

  559. Mao X, Lillington D, Child F, Russell-Jones R, Young B, Whittaker S. Comparative genomic hybridization analysis of primary cutaneous B-cell lymphomas: identification of common genomic alterations in disease pathogenesis. Genes Chromosom Cancer. 2002;35(2):144–55.

    Article  CAS  PubMed  Google Scholar 

  560. Prochazkova M, Chevret E, Mainhaguiet G, Sobotka J, Vergier B, Belaud-Rotureau MA, et al. Common chromosomal abnormalities in mycosis fungoides transformation. Genes Chromosom Cancer. 2007;46(9):828–38.

    Article  CAS  PubMed  Google Scholar 

  561. Caprini E, Cristofoletti C, Arcelli D, Fadda P, Citterich MH, Sampogna F, et al. Identification of key regions and genes important in the pathogenesis of sezary syndrome by combining genomic and expression microarrays. Cancer Res. 2009;69(21):8438–46.

    Article  CAS  PubMed  Google Scholar 

  562. Mao X, McElwaine S. Functional copy number changes in Sezary syndrome: toward an integrated molecular cytogenetic map III. Cancer Genet Cytogenet. 2008;185(2):86–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the Victorian Cancer Agency. We would like to thank Bruce Mercer and Adrian Zordan for assistance with the preparation of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meaghan Wall MBBS, PhD, FRACP, FRCPA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Wall, M., Campbell, L.J. (2018). Cytogenetics of Lymphomas. In: Wiernik, P., Dutcher, J., Gertz, M. (eds) Neoplastic Diseases of the Blood. Springer, Cham. https://doi.org/10.1007/978-3-319-64263-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64263-5_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64262-8

  • Online ISBN: 978-3-319-64263-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics