Skip to main content

Detection and Prediction of Natural Hazards Using Large-Scale Environmental Data

  • Conference paper
  • First Online:
Advances in Spatial and Temporal Databases (SSTD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10411))

Included in the following conference series:

Abstract

Recent developments in remote sensing have made it possible to instrument and sense the physical world with high resolution and fidelity. Consequently, very large spatio-temporal environmental data sets, have become available to the research community. Such data consists of time-series, starting as early as 1973, monitoring up to thousands of environmental parameters, for each spatial region of a resolution as low as \(0.5'\times 0.5'\). To make this flood of data actionable, in this work, we employ a data driven approach to detect and predict natural hazards. Our supervised learning approach learns from labeled historic events. We describe each event by a three-mode tensor, covering space, time and environmental parameters. Due to the very large number of environmental parameters, and the possibility of latent features hidden within these parameters, we employ a tensor factorization approach to learn latent factors. As the corresponding tensors can grow very large, we propose to employ an outlier-score for sparsification, thus explicitly modeling interesting (location, time, parameter) triples only. In our experimental evaluation, we apply our data-driven learning approach to the use-case of predicting the rapid-intensification of tropical storms. Learning from past tropical storms, we show that our approach is able to predict the future rapid-intesification of tropical storms with high accuracy, matching the accuracy of domain specific solutions, yet without using any domain knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ngdc.noaa.gov/hazard/.

  2. 2.

    https://gmao.gsfc.NASA.gov/products/documents/Merra_File_Specification.pdf.

References

  1. Acar, E., Kolda, T.G., Dunlavy, D.M.: All-at-once optimization for coupled matrix and tensor factorizations. arXiv preprint arXiv:1105.3422 (2011)

  2. Berndt, D., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, pp. 359–370 (1994)

    Google Scholar 

  3. Das, M., Parthasarathy, S.: Anomaly detection and Spatio-temporal analysis of global climate system. In: SensorKDD 2009 (2009)

    Google Scholar 

  4. de Lima, G.R.T., Stephany, S.: A new classification approach for detecting severe weather patterns. Comput. Geosci. 57, 158–165 (2013)

    Article  Google Scholar 

  5. DeMaria, M., Kaplan, J.: A statistical hurricane intensity prediction scheme (ships) for the atlantic basin. Weather Forecast. 9(2), 209–220 (1994)

    Article  Google Scholar 

  6. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise, pp. 226–231 (1996)

    Google Scholar 

  7. Faghmous, J.H., Kumar, V.: Spatio-temporal data mining for climate data: advances, challenges, and opportunities. In: Chu, W. (ed.) Data Mining and Knowledge Discovery for Big Data. Studies in Big Data, vol. 1, pp. 83–116. Springer, Heidelberg (2014). doi:10.1007/978-3-642-40837-3_3

    Chapter  Google Scholar 

  8. Ganguly, A.R., Steinhaeuser, K.: Data mining for climate change and impacts. In: ICDMW, pp. 385–394 (2008)

    Google Scholar 

  9. Hey, T., Tansley, S., Tolle, K.M., et al.: The Fourth Paradigm: Data-Intensive Scientific Discovery, vol. 1. Microsoft research Redmond, WA (2009)

    Google Scholar 

  10. Jeon, I., Papalexakis, E.E., Kang, U., Faloutsos, C.: Haten2: billion-scale tensor decompositions. In: ICDE (2015)

    Google Scholar 

  11. Kaplan, J., DeMaria, M.: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic Basin. Weather Forecast. 18(6), 1093–1108 (2003)

    Article  Google Scholar 

  12. Kaplan, J., et al.: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Weather Forecast. 30(5), 1374–1396 (2015)

    Article  Google Scholar 

  13. Karvonen, J., Kaarna, A.: Sea ice SAR feature extraction by non-negative matrix and tensor factorization. In: 2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2008). vol. 4, pp. IV–1093 (2008)

    Google Scholar 

  14. Knorr, E.M., Ng, R.T.: Algorithms for mining distance-based outliers in large datasets, pp. 392–403 (1998)

    Google Scholar 

  15. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. In: SIAM, pp. 455–500 (2009)

    Google Scholar 

  16. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: ParCube: sparse parallelizable tensor decompositions. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS, vol. 7523, pp. 521–536. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33460-3_39

    Chapter  Google Scholar 

  17. Rienecker, M., Suarez, M., Todling, R., Bacmeister, J., Takacs, L., Liu, H., Gu, W., Sienkiewicz, M., Koster, R., Gelaro, R., et al.: The GEOs-5 data assimilation system-documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA Technical Memorandum 104606(27):2008 (2008)

    Google Scholar 

  18. Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M.G., Schubert, S.D., Takacs, L., Kim, G.-K., et al.: Merra: Nasa’s modern-era retrospective analysis for research and applications. J. Clim. 24(14), 3624–3648 (2011)

    Article  Google Scholar 

  19. Réjichi, S., Chaabane, F.: Feature extraction using PCA for VHR satellite image time series Spatio-temporal classification. In: IGARSS, pp. 485–488 (2015)

    Google Scholar 

  20. Réjichi, S., Chaâbane, F.: SVM Spatio-temporal vegetation classification using HR satellite images, vol. 8176 (2011)

    Google Scholar 

  21. Shin, K., Kang, U.: Distributed methods for high-dimensional and large-scale tensor factorization. In: 2014 IEEE International Conference on Data Mining, pp. 989–994, December 2014

    Google Scholar 

  22. Steinbach, M., Tan, P.-N., Kumar, V., Klooster, S., Potter, C.: Discovery of climate indices using clustering. In: KDD, pp. 446–455 (2003)

    Google Scholar 

  23. Takeuchi, K., Tomioka, R., Ishiguro, K., Kimura, A., Sawada, H.: Non-negative multiple tensor factorization. In: 2013 IEEE 13th International Conference on Data Mining, pp. 1199–1204, December 2013

    Google Scholar 

  24. Tobler, W.R.: A computer movie simulating urban growth in the detroit region. Econ. Geogr. 46, 234–240 (1970)

    Article  Google Scholar 

  25. Wang, D., Ding, W.: A hierarchical pattern learning framework for forecasting extreme weather events. In: ICDM (2015)

    Google Scholar 

  26. Yang, R.: A systematic classification investigation of rapid intensification of atlantic tropical cyclones with the ships database. Weather Forecast. 31(2), 495–513 (2016)

    Article  Google Scholar 

  27. Yang, R., Tang, J., Kafatos, M.: Mining “optimal” conditions for rapid intensifications of tropical cyclones. In: Program of the 19th Conference on Probability and Statistics. American Meteorological Society (2008)

    Google Scholar 

  28. Yang, R., Tang, J., Sun, D.: Association rule data mining applications for atlantic tropical cyclone intensity changes. Weather Forecast. 26(3), 337–353 (2011)

    Article  Google Scholar 

  29. Yang, W., Cui, Y.: Tensor factorization-based classification of Alzheimer’s disease vs healthy controls. In: 2012 5th International Conference on Biomedical Engineering and Informatics (BMEI), pp. 371–374. IEEE (2012)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Technical University of Munich - Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement no. 291763, co-funded by the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Züfle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hubig, N., Fengler, P., Züfle, A., Yang, R., Günnemann, S. (2017). Detection and Prediction of Natural Hazards Using Large-Scale Environmental Data. In: Gertz, M., et al. Advances in Spatial and Temporal Databases. SSTD 2017. Lecture Notes in Computer Science(), vol 10411. Springer, Cham. https://doi.org/10.1007/978-3-319-64367-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64367-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64366-3

  • Online ISBN: 978-3-319-64367-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics