Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1019))

Abstract

Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit–variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aandahl RZ, Reyes JF, Sisson SA, Tanaka MM (2012) A model-based Bayesian estimation of the rate of evolution of VNTR loci in Mycobacterium tuberculosis. PLoS Comput Biol 8(6):e1002573. doi:10.1371/journal.pcbi.1002573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmed N, Alam M, Abdul Majeed A, Asad Rahman S, Cataldi A, Cousins D, Hasnain SE (2003) Genome sequence based, comparative analysis of the fluorescent amplified fragment length polymorphisms (FAFLP) of tubercle bacilli from seals provides molecular evidence for a new species within the Mycobacterium tuberculosis complex. Infect Genet Evol 2(3):193–199

    Article  CAS  PubMed  Google Scholar 

  • Aleksic E, Merker M, Cox H, Reiher B, Sekawi Z, Hearps AC, Ryan CE, Lee AV, Goursaud R, Malau C, O’Connor J, Cherry CL, Niemann S, Crowe SM (2013) First molecular epidemiology study of Mycobacterium tuberculosis in Kiribati. PLoS One 8(1):e55423. doi:10.1371/journal.pone.0055423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Hajoj SA, Akkerman O, Parwati I, Al-Gamdi S, Rahim Z, van Soolingen D, van Ingen J, Supply P, Van der Zanden AG (2010) Microevolution of Mycobacterium tuberculosis in a tuberculosis patient. J Clin Microbiol 48(10):3813–3816. JCM.00556-10 [pii]. doi:10.1128/JCM.00556-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Allix C, Supply P, Fauville-Dufaux M (2004) Utility of fast mycobacterial interspersed repetitive unit-variable number tandem repeat genotyping in clinical mycobacteriological analysis. Clin Infect Dis 39(6):783–789

    Article  CAS  PubMed  Google Scholar 

  • Allix-Beguec C, Fauville-Dufaux M, Supply P (2008a) Three-year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 46(4):1398–1406. doi:10.1128/JCM.02089-07

    Article  PubMed  PubMed Central  Google Scholar 

  • Allix-Beguec C, Harmsen D, Weniger T, Supply P, Niemann S (2008b) Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol 46(8):2692–2699. JCM.00540-08 [pii]. doi:10.1128/JCM.00540-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allix-Beguec C, Supply P, Wanlin M, Bifani P, Fauville-Dufaux M (2008c) Standardised PCR-based molecular epidemiology of tuberculosis. Eur Respir J 31(5):1077–1084

    Article  CAS  PubMed  Google Scholar 

  • Allix-Beguec C, Wahl C, Hanekom M, Nikolayevskyy V, Drobniewski F, Maeda S, Campos-Herrero I, Mokrousov I, Niemann S, Kontsevaya I, Rastogi N, Samper S, Sng LH, Warren RM, Supply P (2014) Proposal of a consensus set of hypervariable mycobacterial interspersed repetitive-unit-variable-number tandem-repeat loci for subtyping of Mycobacterium tuberculosis Beijing isolates. J Clin Microbiol 52(1):164–172. doi:10.1128/JCM.02519-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alonso-Rodriguez N, Martinez-Lirola M, Sanchez ML, Herranz M, Penafiel T, Bonillo Mdel C, Gonzalez-Rivera M, Martinez J, Cabezas T, Diez-Garcia LF, Bouza E, Garcia de Viedma D (2009) Prospective universal application of mycobacterial interspersed repetitive-unit-variable-number tandem-repeat genotyping to characterize Mycobacterium tuberculosis isolates for fast identification of clustered and orphan cases. J Clin Microbiol 47(7):2026–2032. JCM.02308-08 [pii]. doi:10.1128/JCM.02308-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbeit RD, Arthur M, Dunn R, Kim C, Selander RK, Goldstein R (1990) Resolution of recent evolutionary divergence among Escherichia coli from related lineages: the application of pulsed field electrophoresis to molecular epidemiology. J Infect Dis 161(2):230–235

    Article  CAS  PubMed  Google Scholar 

  • Arnold A, Witney AA, Vergnano S, Roche A, Cosgrove CA, Houston A, Gould KA, Hinds J, Riley P, Macallan D, Butcher PD, Harrison TS (2016) XDR-TB transmission in London: case management and contact tracing investigation assisted by early whole genome sequencing. J Infect. doi:10.1016/j.jinf.2016.04.037

  • Baker L, Brown T, Maiden MC, Drobniewski F (2004) Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis 10(9):1568–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balcells ME, Garcia P, Meza P, Pena C, Cifuentes M, Couvin D, Rastogi N (2015) A first insight on the population structure of Mycobacterium tuberculosis complex as studied by spoligotyping and MIRU-VNTRs in Santiago, Chile. PLoS One 10(2):e0118007. doi:10.1371/journal.pone.0118007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barnes PF, Cave MD (2003) Molecular epidemiology of tuberculosis. N Engl J Med 349(12):1149–1156. doi:10.1056/NEJMra021964

    Article  CAS  PubMed  Google Scholar 

  • Bates JH, Mitchison DA (1969) Geographic distribution of bacteriophage types of Mycobacterium tuberculosis. Am Rev Respir Dis 100(2):189–193. doi:10.1164/arrd.1969.100.2.189

    CAS  PubMed  Google Scholar 

  • de Beer JL, Kremer K, Kodmon C, Supply P, van Soolingen D (2012) First worldwide proficiency study on variable-number tandem-repeat typing of Mycobacterium tuberculosis complex strains. J Clin Microbiol 50(3):662–669. doi:10.1128/JCM.00607-11

    Article  PubMed  PubMed Central  Google Scholar 

  • de Beer JL, van Ingen J, de Vries G, Erkens C, Sebek M, Mulder A, Sloot R, van den Brandt AM, Enaimi M, Kremer K, Supply P, van Soolingen D (2013) Comparative study of IS6110 restriction fragment length polymorphism and variable-number tandem-repeat typing of Mycobacterium tuberculosis isolates in the Netherlands, based on a 5-year nationwide survey. J Clin Microbiol 51(4):1193–1198. doi:10.1128/JCM.03061-12

    Article  PubMed  PubMed Central  Google Scholar 

  • de Beer JL, Akkerman OW, Schurch AC, Mulder A, van der Werf TS, van der Zanden AG, van Ingen J, van Soolingen D (2014a) Optimization of standard in-house 24-locus variable-number tandem-repeat typing for Mycobacterium tuberculosis and its direct application to clinical material. J Clin Microbiol 52(5):1338–1342. doi:10.1128/JCM.03436-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Beer JL, Kodmon C, van Ingen J, Supply P, van Soolingen D (2014b) Second worldwide proficiency study on variable number of tandem repeats typing of Mycobacterium tuberculosis complex. Int J Tuberc Lung Dis 18(5):594–600. doi:10.5588/ijtld.13.0531

    Article  PubMed  Google Scholar 

  • Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284(5419):1520–1523

    Article  CAS  PubMed  Google Scholar 

  • Berg S, Garcia-Pelayo MC, Muller B, Hailu E, Asiimwe B, Kremer K, Dale J, Boniotti MB, Rodriguez S, Hilty M, Rigouts L, Firdessa R, Machado A, Mucavele C, Ngandolo BN, Bruchfeld J, Boschiroli L, Muller A, Sahraoui N, Pacciarini M, Cadmus S, Joloba M, van Soolingen D, Michel AL, Djonne B, Aranaz A, Zinsstag J, van Helden P, Portaels F, Kazwala R, Kallenius G, Hewinson RG, Aseffa A, Gordon SV, Smith NH (2011) African 2, a clonal complex of Mycobacterium bovis epidemiologically important in East Africa. J Bacteriol 193(3):670–678. doi:10.1128/JB.00750-10

    Article  CAS  PubMed  Google Scholar 

  • Biadglegne F, Merker M, Sack U, Rodloff AC, Niemann S (2015) Tuberculous lymphadenitis in Ethiopia predominantly caused by strains belonging to the Delhi/CAS lineage and newly identified Ethiopian clades of the Mycobacterium tuberculosis complex. PLoS One 10(9):e0137865. doi:10.1371/journal.pone.0137865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bidovec-Stojkovic U, Zolnir-Dovc M, Supply P (2011) One year nationwide evaluation of 24-locus MIRU-VNTR genotyping on Slovenian Mycobacterium tuberculosis isolates. Respir Med 105(Suppl 1):S67–S73. doi:10.1016/S0954-6111(11)70014-2

    Article  PubMed  Google Scholar 

  • Biek R, O’Hare A, Wright D, Mallon T, McCormick C, Orton RJ, McDowell S, Trewby H, Skuce RA, Kao RR (2012) Whole genome sequencing reveals local transmission patterns of Mycobacterium bovis in sympatric cattle and badger populations. PLoS Pathog 8(11):e1003008. doi:10.1371/journal.ppat.1003008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bifani PJ, Plikaytis BB, Kapur V, Stockbauer K, Pan X, Lutfey ML, Moghazeh SL, Eisner W, Daniel TM, Kaplan MH, Crawford JT, Musser JM, Kreiswirth BN (1996) Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA 275(6):452–457

    Article  CAS  PubMed  Google Scholar 

  • Bjorn-Mortensen K, Soborg B, Koch A, Ladefoged K, Merker M, Lillebaek T, Andersen AB, Niemann S, Kohl TA (2016) Tracing Mycobacterium tuberculosis transmission by whole genome sequencing in a high incidence setting: a retrospective population-based study in East Greenland. Sci Rep 6:33180. doi:10.1038/srep33180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blouin Y, Cazajous G, Dehan C, Soler C, Vong R, Hassan MO, Hauck Y, Boulais C, Andriamanantena D, Martinaud C, Martin E, Pourcel C, Vergnaud G (2014) Progenitor “Mycobacterium canettii” clone responsible for lymph node tuberculosis epidemic, Djibouti. Emerg Infect Dis 20(1):21–28. doi:10.3201/eid2001.130652

    Article  PubMed  PubMed Central  Google Scholar 

  • Boritsch EC, Supply P, Honore N, Seemann T, Stinear TP, Brosch R (2014) A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Mol Microbiol 93(5):835–852. doi:10.1111/mmi.12720

    Article  CAS  PubMed  Google Scholar 

  • Boritsch EC, Frigui W, Cascioferro A, Malaga W, Etienne G, Laval F, Pawlik A, Le Chevalier F, Orgeur M, Ma L, Bouchier C, Stinear TP, Supply P, Majlessi L, Daffé M, Guilhot C, Brosch R (2016a) pks5-recombination-mediated surface remodelling in Mycobacterium tuberculosis emergence. Nat Microbiol 1:15019

    Article  CAS  PubMed  Google Scholar 

  • Boritsch EC, Khanna V, Pawlik A, Honore N, Navas VH, Ma L, Bouchier C, Seemann T, Supply P, Stinear TP, Brosch R (2016b) Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria. Proc Natl Acad Sci U S A 113(35):9876–9881. doi:10.1073/pnas.1604921113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ, Campbell TJ, Majander K, Wilbur AK, Guichon RA, Wolfe Steadman DL, Cook DC, Niemann S, Behr MA, Zumarraga M, Bastida R, Huson D, Nieselt K, Young D, Parkhill J, Buikstra JE, Gagneux S, Stone AC, Krause J (2014) Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514(7523):494–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z (2015) Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 6:10063. doi:10.1038/ncomms10063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosch R, Gordon SV, Billault A, Garnier T, Eiglmeier K, Soravito C, Barrell BG, Cole ST (1998) Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics. Infect Immun 66(5):2221–2229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brosch R, Philipp WJ, Stavropoulos E, Colston MJ, Cole ST, Gordon SV (1999) Genomic analysis reveals variation between Mycobacterium tuberculosis H37Rv and the attenuated M. tuberculosis H37Ra strain. Infect Immun 67(11):5768–5774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99(6):3684–3689. doi:10.1073/pnas.052548299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AC, Bryant JM, Einer-Jensen K, Holdstock J, Houniet DT, Chan JZ, Depledge DP, Nikolayevskyy V, Broda A, Stone MJ, Christiansen MT, Williams R, McAndrew MB, Tutill H, Brown J, Melzer M, Rosmarin C, McHugh TD, Shorten RJ, Drobniewski F, Speight G, Breuer J (2015) Rapid whole-genome sequencing of mycobacterium tuberculosis isolates directly from clinical samples. J Clin Microbiol 53(7):2230–2237. doi:10.1128/JCM.00486-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brudey K, Gutierrez MC, Vincent V, Parsons LM, Salfinger M, Rastogi N, Sola C (2004) Mycobacterium africanum genotyping using novel spacer oligonucleotides in the direct repeat locus. J Clin Microbiol 42(11):5053–5057. doi:10.1128/JCM.42.11.5053-5057.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, Allix C, Aristimuno L, Arora J, Baumanis V, Binder L, Cafrune P, Cataldi A, Cheong S, Diel R, Ellermeier C, Evans JT, Fauville-Dufaux M, Ferdinand S, Garcia de Viedma D, Garzelli C, Gazzola L, Gomes HM, Guttierez MC, Hawkey PM, van Helden PD, Kadival GV, Kreiswirth BN, Kremer K, Kubin M, Kulkarni SP, Liens B, Lillebaek T, Ho ML, Martin C, Mokrousov I, Narvskaia O, Ngeow YF, Naumann L, Niemann S, Parwati I, Rahim Z, Rasolofo-Razanamparany V, Rasolonavalona T, Rossetti ML, Rusch-Gerdes S, Sajduda A, Samper S, Shemyakin IG, Singh UB, Somoskovi A, Skuce RA, van Soolingen D, Streicher EM, Suffys PN, Tortoli E, Tracevska T, Vincent V, Victor TC, Warren RM, Yap SF, Zaman K, Portaels F, Rastogi N, Sola C (2006) Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6:23. 1471-2180-6-23 [pii]. doi:10.1186/1471-2180-6-23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryant JM, Schurch AC, van Deutekom H, Harris SR, de Beer JL, de Jager V, Kremer K, van Hijum SA, Siezen RJ, Borgdorff M, Bentley SD, Parkhill J, van Soolingen D (2013) Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data. BMC Infect Dis 13(1):110. doi:10.1186/1471-2334-13-110

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardoso Oelemann M, Gomes HM, Willery E, Possuelo L, Batista Lima KV, Allix-Beguec C, Locht C, Goguet de la Salmoniere YO, Gutierrez MC, Suffys P, Supply P (2011) The forest behind the tree: phylogenetic exploration of a dominant Mycobacterium tuberculosis strain lineage from a high tuberculosis burden country. PLoS One 6(3):e18256. doi:10.1371/journal.pone.0018256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cegielski JP, Dalton T, Yagui M, Wattanaamornkiet W, Volchenkov GV, Via LE, Van Der Walt M, Tupasi T, Smith SE, Odendaal R, Leimane V, Kvasnovsky C, Kuznetsova T, Kurbatova E, Kummik T, Kuksa L, Kliiman K, Kiryanova EV, Kim H, Kim CK, Kazennyy BY, Jou R, Huang WL, Ershova J, Erokhin VV, Diem L, Contreras C, Cho SN, Chernousova LN, Chen MP, Caoili JC, Bayona J, Akksilp S (2014) Extensive drug resistance acquired during treatment of multidrug-resistant tuberculosis. Clin Infect Dis 59(8):1049–1063. doi:10.1093/cid/ciu572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10(6):563–569. doi:10.1038/nmeth.2474

    Article  CAS  PubMed  Google Scholar 

  • Cohen KA, Abeel T, Manson McGuire A, Desjardins CA, Munsamy V, Shea TP, Walker BJ, Bantubani N, Almeida DV, Alvarado L, Chapman SB, Mvelase NR, Duffy EY, Fitzgerald MG, Govender P, Gujja S, Hamilton S, Howarth C, Larimer JD, Maharaj K, Pearson MD, Priest ME, Zeng Q, Padayatchi N, Grosset J, Young SK, Wortman J, Mlisana KP, O’Donnell MR, Birren BW, Bishai WR, Pym AS, Earl AM (2015) Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med 12(9):e1001880. doi:10.1371/journal.pmed.1001880

    Article  PubMed  PubMed Central  Google Scholar 

  • Coitinho C, Greif G, Robello C, Laserra P, Willery E, Supply P (2013) Rapidly progressing tuberculosis outbreak in a very low risk group. Eur Respir J. doi:10.1183/09031936.00150413

  • Colangeli R, Arcus VL, Cursons RT, Ruthe A, Karalus N, Coley K, Manning SD, Kim S, Marchiano E, Alland D (2014) Whole genome sequencing of Mycobacterium tuberculosis reveals slow growth and low mutation rates during latent infections in humans. PLoS One 9(3):e91024. doi:10.1371/journal.pone.0091024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544. doi:10.1038/31159

    Article  CAS  PubMed  Google Scholar 

  • Coll F, McNerney R, Guerra-Assuncao JA, Glynn JR, Perdigao J, Viveiros M, Portugal I, Pain A, Martin N, Clark TG (2014) A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun 5:4812. doi:10.1038/ncomms5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins DM, De Lisle GW (1984) DNA restriction endonuclease analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG. J Gen Microbiol 130(4):1019–1021. doi:10.1099/00221287-130-4-1019

    CAS  PubMed  Google Scholar 

  • Comas I, Homolka S, Niemann S, Gagneux S (2009) Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One 4(11):e7815. doi:10.1371/journal.pone.0007815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, Ernst JD, Gagneux S (2010) Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42(6):498–503. doi:10.1038/ng.590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S (2013) Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet 45(10):1176–1182. doi:10.1038/ng.2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comas I, Hailu E, Kiros T, Bekele S, Mekonnen W, Gumi B, Tschopp R, Ameni G, Hewinson RG, Robertson BD, Goig GA, Stucki D, Gagneux S, Aseffa A, Young D, Berg S (2015) Population genomics of Mycobacterium tuberculosis in Ethiopia contradicts the virgin soil hypothesis for human tuberculosis in Sub-Saharan Africa. Curr Biol 25(24):3260–3266. doi:10.1016/j.cub.2015.10.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke GS, Beaton RK, Lessells RJ, John L, Ashworth S, Kon OM, Williams OM, Supply P, Moodley P, Pym AS (2011) International spread of MDR TB from Tugela Ferry, South Africa. Emerg Infect Dis 17(11):2035–2037. doi:10.3201/eid1711.110291

    Article  PubMed  PubMed Central  Google Scholar 

  • Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C (2003) The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163(9):1009–1021. doi:10.1001/archinte.163.9.1009

    Article  PubMed  Google Scholar 

  • Coscolla M, Gagneux S (2014) Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol 26(6):431–444. doi:10.1016/j.smim.2014.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coscolla M, Barry PM, Oeltmann JE, Koshinsky H, Shaw T, Cilnis M, Posey J, Rose J, Weber T, Fofanov VY, Gagneux S, Kato-Maeda M, Metcalfe JZ (2015) Genomic epidemiology of multidrug-resistant Mycobacterium tuberculosis during transcontinental spread. J Infect Dis 212(2):302–310. doi:10.1093/infdis/jiv025

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowan LS, Mosher L, Diem L, Massey JP, Crawford JT (2002) Variable-number tandem repeat typing of Mycobacterium tuberculosis isolates with low copy numbers of IS6110 by using mycobacterial interspersed repetitive units. J Clin Microbiol 40(5):1592–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan LS, Diem L, Brake MC, Crawford JT (2004) Transfer of a Mycobacterium tuberculosis genotyping method, Spoligotyping, from a reverse line-blot hybridization, membrane-based assay to the Luminex multianalyte profiling system. J Clin Microbiol 42(1):474–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan LS, Diem L, Monson T, Wand P, Temporado D, Oemig TV, Crawford JT (2005) Evaluation of a two-step approach for large-scale, prospective genotyping of Mycobacterium tuberculosis isolates in the United States. J Clin Microbiol 43(2):688–695. 43/2/688 [pii]. doi:10.1128/JCM.43.2.688-695.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan LS, Hooks DP, Christianson S, Sharma MK, Alexander DC, Guthrie JL, Jamieson FB, Supply P, Allix-Beguec C, Cruz L, Desmond E, Kramer R, Lugo S, Rudrik J (2012) Evaluation of mycobacterial interspersed repetitive-unit-variable-number tandem-repeat genotyping as performed in laboratories in Canada, France, and the United States. J Clin Microbiol 50(5):1830–1831.; author reply 1832. doi:10.1128/JCM.00168-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox HS, Kubica T, Doshetov D, Kebede Y, Rusch-Gerdess S, Niemann S (2005) The Beijing genotype and drug resistant tuberculosis in the Aral Sea region of Central Asia. Respir Res 6:134. doi:10.1186/1465-9921-6-134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cox HS, Sibilia K, Feuerriegel S, Kalon S, Polonsky J, Khamraev AK, Rusch-Gerdes S, Mills C, Niemann S (2008) Emergence of extensive drug resistance during treatment for multidrug-resistant tuberculosis. N Engl J Med 359(22):2398–2400. doi:10.1056/NEJMc0805644

    Article  CAS  PubMed  Google Scholar 

  • Crawford JT (1993) Applications of molecular methods to epidemiology of tuberculosis. Res Microbiol 144(2):111–116

    Article  CAS  PubMed  Google Scholar 

  • CRM D, Soini H, Roscanni GC, Jaques M, Villares MC, Musser JM (1999) Extensive cross-contamination of specimens with Mycobacterium tuberculosis in a reference laboratory. J Clin Microbiol 37(4):916–919

    Google Scholar 

  • Daley CL, Horsburgh CR Jr (2014) Editorial commentary: treatment for multidrug-resistant tuberculosis: it's worse than we thought! Clin Infect Dis 59(8):1064–1065. doi:10.1093/cid/ciu578

    Article  CAS  PubMed  Google Scholar 

  • Demay C, Liens B, Burguiere T, Hill V, Couvin D, Millet J, Mokrousov I, Sola C, Zozio T, Rastogi N (2012) SITVITWEB – a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol 12(4):755–766. doi:10.1016/j.meegid.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  • Derbyshire KM, Gray TA (2014) Distributive conjugal transfer: new insights into horizontal gene transfer and genetic exchange in mycobacteria. Microbiol Spectrum 2(1):MGM2-0022-2013. doi:10.1128/microbiolspec.MGM2-0022-2013

    Article  CAS  Google Scholar 

  • Diel R, Schneider S, Meywald-Walter K, Ruf CM, Rusch-Gerdes S, Niemann S (2002) Epidemiology of tuberculosis in Hamburg, Germany: long-term population-based analysis applying classical and molecular epidemiological techniques. J Clin Microbiol 40(2):532–539

    Article  PubMed  PubMed Central  Google Scholar 

  • Diel R, Vandeputte J, de Vries G, Stillo J, Wanlin M, Nienhaus A (2014) Costs of tuberculosis disease in the European Union: a systematic analysis and cost calculation. Eur Respir J 43(2):554–565. doi:10.1183/09031936.00079413

    Article  PubMed  Google Scholar 

  • Doughty EL, Sergeant MJ, Adetifa I, Antonio M, Pallen MJ (2014) Culture-independent detection and characterisation of Mycobacterium tuberculosis and M. africanum in sputum samples using shotgun metagenomics on a benchtop sequencer. Peer J 2:e585. doi:10.7717/peerj.585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dye C, Williams BG (2010) The population dynamics and control of tuberculosis. Science 328(5980):856–861. doi:10.1126/science.1185449

    Article  CAS  PubMed  Google Scholar 

  • Eldholm V, Monteserin J, Rieux A, Lopez B, Sobkowiak B, Ritacco V, Balloux F (2015) Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain. Nat Commun 6:7119. doi:10.1038/ncomms8119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans JT, Hawkey PM, Smith EG, Boese KA, Warren RE, Hong G (2004) Automated high-throughput mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis strains by a combination of PCR and nondenaturing high-performance liquid chromatography. J Clin Microbiol 42(9):4175–4180. doi:10.1128/JCM.42.9.4175-4180.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabre M, Koeck JL, Le Fleche P, Simon F, Herve V, Vergnaud G, Pourcel C (2004) High genetic diversity revealed by variable-number tandem repeat genotyping and analysis of hsp65 gene polymorphism in a large collection of “Mycobacterium canettii” strains indicates that the M. tuberculosis complex is a recently emerged clone of “M. canettii”. J Clin Microbiol 42(7):3248–3255. doi:10.1128/JCM.42.7.3248-3255.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabre M, Hauck Y, Soler C, Koeck JL, van Ingen J, van Soolingen D, Vergnaud G, Pourcel C (2010) Molecular characteristics of “Mycobacterium canettii” the smooth Mycobacterium tuberculosis bacilli. Infect Genet Evol 10(8):1165–1173. doi:10.1016/j.meegid.2010.07.016

    Article  CAS  PubMed  Google Scholar 

  • Fenner L, Malla B, Ninet B, Dubuis O, Stucki D, Borrell S, Huna T, Bodmer T, Egger M, Gagneux S (2011) “Pseudo-Beijing”: evidence for convergent evolution in the direct repeat region of Mycobacterium tuberculosis. PLoS One 6(9):e24737. doi:10.1371/journal.pone.0024737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filliol I, Driscoll JR, van Soolingen D, Kreiswirth BN, Kremer K, Valetudie G, Dang DA, Barlow R, Banerjee D, Bifani PJ, Brudey K, Cataldi A, Cooksey RC, Cousins DV, Dale JW, Dellagostin OA, Drobniewski F, Engelmann G, Ferdinand S, Gascoyne-Binzi D, Gordon M, Gutierrez MC, Haas WH, Heersma H, Kassa-Kelembho E, Ho ML, Makristathis A, Mammina C, Martin G, Mostrom P, Mokrousov I, Narbonne V, Narvskaya O, Nastasi A, Niobe-Eyangoh SN, Pape JW, Rasolofo-Razanamparany V, Ridell M, Rossetti ML, Stauffer F, Suffys PN, Takiff H, Texier-Maugein J, Vincent V, de Waard JH, Sola C, Rastogi N (2003) Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol 41(5):1963–1970

    Article  PubMed  PubMed Central  Google Scholar 

  • Filliol I, Motiwala AS, Cavatore M, Qi W, Hazbon MH, Bobadilla del Valle M, Fyfe J, Garcia-Garcia L, Rastogi N, Sola C, Zozio T, Guerrero MI, Leon CI, Crabtree J, Angiuoli S, Eisenach KD, Durmaz R, Joloba ML, Rendon A, Sifuentes-Osornio J, Ponce de Leon A, Cave MD, Fleischmann R, Whittam TS, Alland D (2006) Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 188(2):759–772. doi:10.1128/JB.188.2.759-772.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs WR Jr, Venter JC Jr, Fraser CM (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184(19):5479–5490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fomukong NG, Tang TH, Al-Maamary S, Ibrahim WA, Ramayah S, Yates M, Zainuddin ZF, Dale JW (1994) Insertion sequence typing of Mycobacterium tuberculosis: characterization of a widespread subtype with a single copy of IS6110. Tuber Lung Dis 75(6):435–440. doi:10.1016/0962-8479(94)90117-1

    Article  CAS  PubMed  Google Scholar 

  • Fomukong N, Beggs M, el Hajj H, Templeton G, Eisenach K, Cave MD (1997) Differences in the prevalence of IS6110 insertion sites in Mycobacterium tuberculosis strains: low and high copy number of IS6110. Tuber Lung Dis 78(2):109–116

    Article  CAS  PubMed  Google Scholar 

  • Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J, Mohaideen N, Ioerger TR, Sacchettini JC, Lipsitch M, Flynn JL, Fortune SM (2011) Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 43(5):482–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frothingham R (1995) Differentiation of strains in Mycobacterium tuberculosis complex by DNA sequence polymorphisms, including rapid identification of M. bovis BCG. J Clin Microbiol 33(4):840–844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frothingham R, Meeker-O’Connell WA (1998) Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology 144(Pt 5):1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, Nicol M, Niemann S, Kremer K, Gutierrez MC, Hilty M, Hopewell PC, Small PM (2006) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103(8):2869–2873. doi:10.1073/pnas.0511240103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, Jensen P, Bayona J (2010) Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375(9728):1830–1843. doi:10.1016/S0140-6736(10)60410-2

    Article  PubMed  Google Scholar 

  • Garcia de Viedma D, Alonso Rodriguez N, Andres S, Ruiz Serrano MJ, Bouza E (2005) Characterization of clonal complexity in tuberculosis by mycobacterial interspersed repetitive unit-variable-number tandem repeat typing. J Clin Microbiol 43(11):5660–5664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, Rempel S, Moore R, Zhao Y, Holt R, Varhol R, Birol I, Lem M, Sharma MK, Elwood K, Jones SJ, Brinkman FS, Brunham RC, Tang P (2011) Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 364(8):730–739. doi:10.1056/NEJMoa1003176

    Article  CAS  PubMed  Google Scholar 

  • Gauthier M, Bidault F, Mosnier A, Bablishvili N, Tukvadze N, Somphavong S, Paboriboune P, Ocheretina O, Pape JW, Paranhos-Baccala G, Berland JL (2014) High-throughput MIRU-VNTR genotyping for Mycobacterium tuberculosis epidemiological studies. J Clin Microbiol. doi:10.1128/JCM.01611-14

  • Getahun H, Matteelli A, Chaisson RE, Raviglione M (2015) Latent Mycobacterium tuberculosis infection. N Engl J Med 372(22):2127–2135. doi:10.1056/NEJMra1405427

    Article  CAS  PubMed  Google Scholar 

  • Gomgnimbou MK, Abadia E, Zhang J, Refregier G, Panaiotov S, Bachiyska E, Sola C (2012) “Spoligoriftyping,” a dual-priming-oligonucleotide-based direct-hybridization assay for tuberculosis control with a multianalyte microbead-based hybridization system. J Clin Microbiol 50(10):3172–3179. doi:10.1128/JCM.00976-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K, Cole ST (1999) Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32(3):643–655

    Article  CAS  PubMed  Google Scholar 

  • Grant A, Arnold C, Thorne N, Gharbia S, Underwood A (2008) Mathematical modelling of Mycobacterium tuberculosis VNTR loci estimates a very slow mutation rate for the repeats. J Mol Evol 66(6):565–574. doi:10.1007/s00239-008-9104-6

    Article  CAS  PubMed  Google Scholar 

  • Gutacker MM, Smoot JC, Migliaccio CA, Ricklefs SM, Hua S, Cousins DV, Graviss EA, Shashkina E, Kreiswirth BN, Musser JM (2002) Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. Genetics 162(4):1533–1543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutacker MM, Mathema B, Soini H, Shashkina E, Kreiswirth BN, Graviss EA, Musser JM (2006) Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J Infect Dis 193(1):121–128. doi:JID34975 [pii]941086/498574

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B, Marmiesse M, Supply P, Vincent V (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1(1):e5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutierrez MC, Ahmed N, Willery E, Narayanan S, Hasnain SE, Chauhan DS, Katoch VM, Vincent V, Locht C, Supply P (2006) Predominance of ancestral lineages of Mycobacterium tuberculosis in India. Emerg Infect Dis 12(9):1367–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris SR, Torok ME, Cartwright EJ, Quail MA, Peacock SJ, Parkhill J (2013) Read and assembly metrics inconsequential for clinical utility of whole-genome sequencing in mapping outbreaks. Nat Biotechnol 31(7):592–594. doi:10.1038/nbt.2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermans PW, van Soolingen D, Bik EM, de Haas PE, Dale JW, van Embden JD (1991) Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun 59(8):2695–2705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, Roach JC, Kremer K, Petrov DA, Feldman MW, Gagneux S (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6(12):e311. 08-PLBI-RA-2811 [pii]. doi:10.1371/journal.pbio.0060311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirsh AE, Tsolaki AG, DeRiemer K, Feldman MW, Small PM (2004) Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci U S A 101(14): 4871–4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homolka S, Projahn M, Feuerriegel S, Ubben T, Diel R, Nubel U, Niemann S (2012) High resolution discrimination of clinical Mycobacterium tuberculosis complex strains based on single nucleotide polymorphisms. PLoS One 7(7):e39855. doi:10.1371/journal.pone.0039855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamoto T, Yoshida S, Suzuki K, Tomita M, Fujiyama R, Tanaka N, Kawakami Y, Ito M (2007) Hypervariable loci that enhance the discriminatory ability of newly proposed 15-loci and 24-loci variable-number tandem repeat typing method on Mycobacterium tuberculosis strains predominated by the Beijing family. FEMS Microbiol Lett 270(1):67–74. doi:10.1111/j.1574-6968.2007.00658.x

    Article  CAS  PubMed  Google Scholar 

  • Jolley KA, Maiden MC (2010) BIGSdb: scalable analysis of bacterial genome variation at the population level. BMC Bioinforma 11:595. doi:10.1186/1471-2105-11-595

    Article  Google Scholar 

  • Junemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, Kalinowski J, Mellmann A, Goesmann A, von Haeseler A, Stoye J, Harmsen D (2013) Updating benchtop sequencing performance comparison. Nat Biotechnol 31(4):294–296. doi:10.1038/nbt.2522

    Article  PubMed  CAS  Google Scholar 

  • Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35(4):907–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato-Maeda M, Ho C, Passarelli B, Banaei N, Grinsdale J, Flores L, Anderson J, Murray M, Rose G, Kawamura LM, Pourmand N, Tariq MA, Gagneux S, Hopewell PC (2013) Use of whole genome sequencing to determine the microevolution of Mycobacterium tuberculosis during an outbreak. PLoS One 8(3):e58235. doi:10.1371/journal.pone.0058235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keim P, Klevytska AM, Price LB, Schupp JM, Zinser G, Smith KL, Hugh-Jones ME, Okinaka R, Hill KK, Jackson PJ (1999) Molecular diversity in Bacillus anthracis. J Appl Microbiol 87(2): 215–217

    Article  CAS  PubMed  Google Scholar 

  • Kitahara K (1973) Studies on the identification of infection source for pulmonary tuberculosis in a family using bacteriophage types as a marker. 2. Studies on the source of infection in family. Kekkaku 48(3):61–69

    CAS  PubMed  Google Scholar 

  • Kohl TA, Diel R, Harmsen D, Rothganger J, Walter KM, Merker M, Weniger T, Niemann S (2014) Whole-genome-based Mycobacterium tuberculosis surveillance: a standardized, portable, and expandable approach. J Clin Microbiol 52(7):2479–2486. doi:10.1128/JCM.00567-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer K, van Soolingen D, Frothingham R, Haas WH, Hermans PW, Martin C, Palittapongarnpim P, Plikaytis BB, Riley LW, Yakrus MA, Musser JM, van Embden JD (1999) Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol 37(8):2607–2618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer K, Glynn JR, Lillebaek T, Niemann S, Kurepina NE, Kreiswirth BN, Bifani PJ, van Soolingen D (2004) Definition of the Beijing/W lineage of Mycobacterium tuberculosis on the basis of genetic markers. J Clin Microbiol 42(9):4040–4049. doi:10.1128/JCM.42.9.4040-4049.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer K, Arnold C, Cataldi A, Gutierrez MC, Haas WH, Panaiotov S, Skuce RA, Supply P, van der Zanden AG, van Soolingen D (2005a) Discriminatory power and reproducibility of novel DNA typing methods for Mycobacterium tuberculosis complex strains. J Clin Microbiol 43(11):5628–5638. 3/11/5628 [pii]. doi:410.1128/JCM.43.11.5628-5638.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer K, Au BK, Yip PC, Skuce R, Supply P, Kam KM, van Soolingen D (2005b) Use of variable-number tandem-repeat typing to differentiate Mycobacterium tuberculosis Beijing family isolates from Hong Kong and comparison with IS6110 restriction fragment length polymorphism typing and spoligotyping. J Clin Microbiol 43(1):314–320. doi:10.1128/jcm.43.1.314-320.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurepina NE, Sreevatsan S, Plikaytis BB, Bifani PJ, Connell ND, Donnelly RJ, van Sooligen D, Musser JM, Kreiswirth BN (1998) Characterization of the phylogenetic distribution and chromosomal insertion sites of five IS6110 elements in Mycobacterium tuberculosis: non-random integration in the dnaA-dnaN region. Tuber Lung Dis 79(1):31–42. doi:10.1054/tuld.1998.0003

    Article  CAS  PubMed  Google Scholar 

  • Lafeuille E, Veziris N, Sougakoff W, Roure F, Le Du D, Dournon N, Caumes E, Jarlier V, Aubry A, Robert J, Bernard C (2016) XDR-tuberculosis in France: community transmission due to non-compliance with isolation precautions. Med Mal Infect 46(1):52–55. doi:10.1016/j.medmal.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  • Lambregts-van Weezenbeek CS, Sebek MM, van Gerven PJ, de Vries G, Verver S, Kalisvaart NA, van Soolingen D (2003) Tuberculosis contact investigation and DNA fingerprint surveillance in The Netherlands: 6 years’ experience with nation-wide cluster feedback and cluster monitoring. Int J Tuberc Lung Dis 7(12 Suppl 3):S463–S470

    CAS  PubMed  Google Scholar 

  • Laver T, Harrison J, O’Neill PA, Moore K, Farbos A, Paszkiewicz K, Studholme DJ (2015) Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif 3:1–8. doi:10.1016/j.bdq.2015.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazzarini LC, Huard RC, Boechat NL, Gomes HM, Oelemann MC, Kurepina N, Shashkina E, Mello FC, Gibson AL, Virginio MJ, Marsico AG, Butler WR, Kreiswirth BN, Suffys PN, Lapa ESJR, Ho JL (2007) Discovery of a novel Mycobacterium tuberculosis lineage that is a major cause of tuberculosis in Rio de Janeiro, Brazil. J Clin Microbiol 45(12):3891–3902. JCM.01394-07 [pii]. doi:10.1128/JCM.01394-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Fleche P, Fabre M, Denoeud F, Koeck JL, Vergnaud G (2002) High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing. BMC Microbiol 2:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee RS, Radomski N, Proulx JF, Levade I, Shapiro BJ, McIntosh F, Soualhine H, Menzies D, Behr MA (2015a) Population genomics of Mycobacterium tuberculosis in the Inuit. Proc Natl Acad Sci U S A 112(44):13609–13614. doi:10.1073/pnas.1507071112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RS, Radomski N, Proulx JF, Manry J, McIntosh F, Desjardins F, Soualhine H, Domenech P, Reed MB, Menzies D, Behr MA (2015b) Reemergence and amplification of tuberculosis in the Canadian arctic. J Infect Dis 211(12):1905–1914. doi:10.1093/infdis/jiv011

    Article  PubMed  Google Scholar 

  • Liu X, Gutacker MM, Musser JM, Fu YX (2006) Evidence for recombination in Mycobacterium tuberculosis. J Bacteriol 188:8169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30(5):434–439. doi:10.1038/nbt.2198

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Giordano F, Ning Z (2016) Oxford Nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics 14(5):265–279. doi:10.1016/j.gpb.2016.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo T, Yang C, Pang Y, Zhao Y, Mei J, Gao Q (2014a) Development of a hierarchical variable-number tandem repeat typing scheme for Mycobacterium tuberculosis in China. PLoS One 9(2):e89726. doi:10.1371/journal.pone.0089726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo T, Yang C, Peng Y, Lu L, Sun G, Wu J, Jin X, Hong J, Li F, Mei J, DeRiemer K, Gao Q (2014b) Whole-genome sequencing to detect recent transmission of Mycobacterium tuberculosis in settings with a high burden of tuberculosis. Tuberculosis (Edinb) 94(4):434–440. doi:10.1016/j.tube.2014.04.005

    Article  CAS  Google Scholar 

  • Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, Yang C, Liu Q, Gan M, Sun G, Shen X, Liu F, Gagneux S, Mei J, Lan R, Wan K, Gao Q (2015) Southern east Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci U S A 112(26):8136–8141. doi:10.1073/pnas.1424063112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda S, Murase Y, Mitarai S, Sugawara I, Kato S (2008) Rapid, simple genotyping method by the variable numbers of tandem repeats (VNTR) for Mycobacterium tuberculosis isolates in Japan--analytical procedure of JATA (12)-VNTR. Kekkaku 83(10):673–678

    CAS  PubMed  Google Scholar 

  • Maes M, Kremer K, van Soolingen D, Takiff H, de Waard JH (2008) 24-locus MIRU-VNTR genotyping is a useful tool to study the molecular epidemiology of tuberculosis among Warao Amerindians in Venezuela. Tuberculosis (Edinb) 88(5):490–494. doi:10.1016/j.tube.2008.04.003

    Article  Google Scholar 

  • Magdalena J, Supply P, Locht C (1998) Specific differentiation between Mycobacterium bovis BCG and virulent strains of the Mycobacterium tuberculosis complex. J Clin Microbiol 36(9):2471–2476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95(6):3140–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiden MC, Jansen van Rensburg MJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy ND (2013) MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 11(10):728–736. doi:10.1038/nrmicro3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9(6):467–477. doi:10.1038/nrmicro2577

    Article  CAS  PubMed  Google Scholar 

  • Mankiewicz E, Liivak M (1975) Phage types of mycobacterium tuberculosis in cultures isolated from Eskimo patients. Am Rev Respir Dis 111(3):307–312. doi:10.1164/arrd.1975.111.3.307

    CAS  PubMed  Google Scholar 

  • Marais BJ (2016) The global tuberculosis situation and the inexorable rise of drug-resistant disease. Adv Drug Deliv Rev. doi:10.1016/j.addr.2016.01.021

  • Matsumoto T, Koshii Y, Sakane K, Murakawa T, Hirayama Y, Yoshida H, Kurokawa M, Tamura Y, Nagai T, Kawase I (2013) A novel approach to automated genotyping of Mycobacterium tuberculosis using a panel of 15 MIRU VNTRs. J Microbiol Methods 93(3):239–241. doi:10.1016/j.mimet.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  • Mazars E, Lesjean S, Banuls AL, Gilbert M, Vincent V, Gicquel B, Tibayrenc M, Locht C, Supply P (2001) High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci U S A 98(4):1901–1906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mbugi EV, Katale BZ, Streicher EM, Keyyu JD, Kendall SL, Dockrell HM, Michel AL, Rweyemamu MM, Warren RM, Matee MI, van Helden PD, Couvin D, Rastogi N (2016) Mapping of mycobacterium tuberculosis complex genetic diversity profiles in Tanzania and other African countries. PLoS One 11(5):e0154571. doi:10.1371/journal.pone.0154571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McAdam RA, Hermans PW, van Soolingen D, Zainuddin ZF, Catty D, van Embden JD, Dale JW (1990) Characterization of a Mycobacterium tuberculosis insertion sequence belonging to the IS3 family. Mol Microbiol 4(9):1607–1613

    Article  CAS  PubMed  Google Scholar 

  • Merker M, Kohl TA, Roetzer A, Truebe L, Richter E, Rusch-Gerdes S, Fattorini L, Oggioni MR, Cox H, Varaine F, Niemann S (2013) Whole genome sequencing reveals complex evolution patterns of multidrug-resistant Mycobacterium tuberculosis Beijing strains in patients. PLoS One 8(12):e82551. doi:10.1371/journal.pone.0082551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merker M, Blin C, Mona S, Duforet-Frebourg N, Lecher S, Willery E, Blum M, Rusch-Gerdes S, Mokrousov I, Aleksic E, Allix-Beguec C, Antierens A, Augustynowicz-Kopec E, Ballif M, Barletta F, Beck HP, Barry CE 3rd, Bonnet M, Borroni E, Campos-Herrero I, Cirillo D, Cox H, Crowe S, Crudu V, Diel R, Drobniewski F, Fauville-Dufaux M, Gagneux S, Ghebremichael S, Hanekom M, Hoffner S, Jiao WW, Kalon S, Kohl TA, Kontsevaya I, Lillebaek T, Maeda S, Nikolayevskyy V, Rasmussen M, Rastogi N, Samper S, Sanchez-Padilla E, Savic B, Shamputa IC, Shen A, Sng LH, Stakenas P, Toit K, Varaine F, Vukovic D, Wahl C, Warren R, Supply P, Niemann S, Wirth T (2015) Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet. doi:10.1038/ng.3195

  • Michele TM, Cronin WA, Graham NM, Dwyer DM, Pope DS, Harrington S, Chaisson RE, Bishai WR (1997) Transmission of Mycobacterium tuberculosis by a fiberoptic bronchoscope. Identification by DNA fingerprinting. JAMA 278(13):1093–1095

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto M, Motooka D, Gotoh K, Imai T, Yoshitake K, Goto N, Iida T, Yasunaga T, Horii T, Arakawa K, Kasahara M, Nakamura S (2014) Performance comparison of second- and third-generation sequencers using a bacterial genome with two chromosomes. BMC Genomics 15:699. doi:10.1186/1471-2164-15-699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mokrousov I (2013) Insights into the origin, emergence, and current spread of a successful Russian clone of Mycobacterium tuberculosis. Clin Microbiol Rev 26(2):342–360. doi:10.1128/CMR.00087-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokrousov I, Narvskaya O, Vyazovaya A, Millet J, Otten T, Vishnevsky B, Rastogi N (2008) Mycobacterium tuberculosis Beijing genotype in Russia: in search of informative variable-number tandem-repeat loci. J Clin Microbiol 46(11):3576–3584. doi:10.1128/JCM.00414-08

    Article  PubMed  PubMed Central  Google Scholar 

  • Mokrousov I, Vyazovaya A, Iwamoto T, Skiba Y, Pole I, Zhdanova S, Arikawa K, Sinkov V, Umpeleva T, Valcheva V, Alvarez Figueroa M, Ranka R, Jansone I, Ogarkov O, Zhuravlev V, Narvskaya O (2016) Latin-American-Mediterranean lineage of Mycobacterium tuberculosis: human traces across pathogen's phylogeography. Mol Phylogenet Evol 99:133–143. doi:10.1016/j.ympev.2016.03.020

    Article  PubMed  Google Scholar 

  • Mortimer TD, Pepperell CS (2014) Genomic signatures of distributive conjugal transfer among mycobacteria. Genome Biol Evol 6(9):2489–2500. doi:10.1093/gbe/evu175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mostowy S, Cousins D, Brinkman J, Aranaz A, Behr MA (2002) Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J Infect Dis 186(1):74–80

    Article  CAS  PubMed  Google Scholar 

  • Muller B, Hilty M, Berg S, Garcia-Pelayo MC, Dale J, Boschiroli ML, Cadmus S, Ngandolo BN, Godreuil S, Diguimbaye-Djaibe C, Kazwala R, Bonfoh B, Njanpop-Lafourcade BM, Sahraoui N, Guetarni D, Aseffa A, Mekonnen MH, Razanamparany VR, Ramarokoto H, Djonne B, Oloya J, Machado A, Mucavele C, Skjerve E, Portaels F, Rigouts L, Michel A, Muller A, Kallenius G, van Helden PD, Hewinson RG, Zinsstag J, Gordon SV, Smith NH (2009) African 1, an epidemiologically important clonal complex of Mycobacterium bovis dominant in Mali, Nigeria, Cameroon, and Chad. J Bacteriol 191(6):1951–1960. doi:10.1128/JB.01590-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadon CA, Trees E, Ng LK, Moller Nielsen E, Reimer A, Maxwell N, Kubota KA, Gerner-Smidt P (2013) Development and application of MLVA methods as a tool for inter-laboratory surveillance. Euro surveillance: bulletin Europeen sur les maladies transmissibles. Eur Commun Dis Bull 18(35):20565

    CAS  Google Scholar 

  • Namouchi A, Didelot X, Schock U, Gicquel B, Rocha EP (2012) After the bottleneck: genome-wide diversification of the Mycobacterium tuberculosis complex by mutation, recombination, and natural selection. Genome Res 22(4):721–734. doi:10.1101/gr.129544.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemann S, Supply P (2014) Diversity and evolution of Mycobacterium tuberculosis: moving to whole-genome-based approaches. Cold Spring Harb Perspect Med 4(12):a021188. doi:10.1101/cshperspect.a021188

    Article  PubMed  PubMed Central  Google Scholar 

  • Niemann S, Rusch-Gerdes S, Richter E (1997) IS6110 fingerprinting of drug-resistant Mycobacterium tuberculosis strains isolated in Germany during 1995. J Clin Microbiol 35(12):3015–3020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niemann S, Harmsen D, Rusch-Gerdes S, Richter E (2000a) Differentiation of clinical Mycobacterium tuberculosis complex isolates by gyrB DNA sequence polymorphism analysis. J Clin Microbiol 38(9):3231–3234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niemann S, Rusch-Gerdes S, Richter E, Thielen H, Heykes-Uden H, Diel R (2000b) Stability of IS6110 restriction fragment length polymorphism patterns of Mycobacterium tuberculosis strains in actual chains of transmission. J Clin Microbiol 38(7):2563–2567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niemann S, Koser CU, Gagneux S, Plinke C, Homolka S, Bignell H, Carter RJ, Cheetham RK, Cox A, Gormley NA, Kokko-Gonzales P, Murray LJ, Rigatti R, Smith VP, Arends FP, Cox HS, Smith G, Archer JA (2009) Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints. PLoS One 4(10):e7407. doi:10.1371/journal.pone.0007407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nikolayevskyy V, Gopaul K, Balabanova Y, Brown T, Fedorin I, Drobniewski F (2006) Differentiation of tuberculosis strains in a population with mainly Beijing-family strains. Emerg Infect Dis 12(9):1406–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolayevskyy V, Trovato A, Broda A, Borroni E, Cirillo D, Drobniewski F (2016) MIRU-VNTR genotyping of mycobacterium tuberculosis strains using QIAxcel technology: a multicentre evaluation study. PLoS One 11(3):e0149435. doi:10.1371/journal.pone.0149435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nogueira CL, Prim RI, Senna SG, Rovaris DB, Maurici R, Rossetti ML, Couvin D, Rastogi N, Bazzo ML (2016) First insight into the molecular epidemiology of Mycobacterium tuberculosis in Santa Catarina, southern Brazil. Tuberculosis (Edinb) 97:57–64. doi:10.1016/j.tube.2015.12.005

    Article  Google Scholar 

  • Oelemann MC, Diel R, Vatin V, Haas W, Rusch-Gerdes S, Locht C, Niemann S, Supply P (2007) Assessment of an optimized mycobacterial interspersed repetitive- unit-variable-number tandem-repeat typing system combined with spoligotyping for population-based molecular epidemiology studies of tuberculosis. J Clin Microbiol 45(3):691–697. doi:10.1128/JCM.01393-06

    Article  CAS  PubMed  Google Scholar 

  • Pankhurst LJ, Del Ojo EC, Votintseva AA, Walker TM, Cole K, Davies J, Fermont JM, Gascoyne-Binzi DM, Kohl TA, Kong C, Lemaitre N, Niemann S, Paul J, Rogers TR, Roycroft E, Smith EG, Supply P, Tang P, Wilcox MH, Wordsworth S, Wyllie D, Xu L, Crook DW (2016) Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med 4(1):49–58. doi:10.1016/S2213-2600(15)00466-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepperell CS, Casto AM, Kitchen A, Granka JM, Cornejo OE, Holmes EC, Birren B, Galagan J, Feldman MW (2013) The role of selection in shaping diversity of natural M. tuberculosis populations. PLoS Pathog 9(8):e1003543. doi:10.1371/journal.ppat.1003543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Lago L, Comas I, Navarro Y, Gonzalez-Candelas F, Herranz M, Bouza E, Garcia-de-Viedma D (2014) Whole genome sequencing analysis of intrapatient microevolution in Mycobacterium tuberculosis: potential impact on the inference of tuberculosis transmission. J Infect Dis 209(1):98–108. doi:10.1093/infdis/jit439

    Article  PubMed  Google Scholar 

  • Poulet S, Cole ST (1995) Characterization of the highly abundant polymorphic GC-rich-repetitive sequence (PGRS) present in Mycobacterium tuberculosis. Arch Microbiol 163(2):87–95

    Article  CAS  PubMed  Google Scholar 

  • Pouseele H, Supply P (2015) Accurate whole-genome sequencing-based epidemiological surveillance of mycobacterium tuberculosis. In: Sails A, Tang YW (eds) Current and emerging technologies for the diagnosis of microbial infections, vol 45. Methods in microbiology, pp 359–394

    Google Scholar 

  • Prod’hom G, Guilhot C, Gutierrez MC, Varnerot A, Gicquel B, Vincent V (1997) Rapid discrimination of Mycobacterium tuberculosis complex strains by ligation-mediated PCR fingerprint analysis. J Clin Microbiol 35(12):3331–3334

    PubMed  PubMed Central  Google Scholar 

  • Ragheb MN, Ford CB, Chase MR, Lin PL, Flynn JL, Fortune SM (2013) The mutation rate of mycobacterial repetitive unit loci in strains of M. tuberculosis from cynomolgus macaque infection. BMC Genomics 14:145. doi:10.1186/1471-2164-14-145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raleigh JW, Wichelhausen R (1973) Exogenous reinfection with Mycobacterium tuberculosis confirmed by phage typing. Am Rev Respir Dis 108(3):639–642. doi:10.1164/arrd.1973.108.3.639

    CAS  PubMed  Google Scholar 

  • Reiling N, Homolka S, Walter K, Brandenburg J, Niwinski L, Ernst M, Herzmann C, Lange C, Diel R, Ehlers S, Niemann S (2013) Clade-specific virulence patterns of Mycobacterium tuberculosis complex strains in human primary macrophages and aerogenically infected mice. mBio 4 (4):10.1128/mBio.00250-13

  • Reyes JF, Tanaka MM (2010) Mutation rates of spoligotypes and variable numbers of tandem repeat loci in Mycobacterium tuberculosis. Infect Genet Evol 10(7):1046–1051. doi:10.1016/j.meegid.2010.06.016

    Article  CAS  PubMed  Google Scholar 

  • Richter E, Weizenegger M, Rusch-Gerdes S, Niemann S (2003) Evaluation of genotype MTBC assay for differentiation of clinical Mycobacterium tuberculosis complex isolates. J Clin Microbiol 41(6):2672–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roetzer A, Schuback S, Diel R, Gasau F, Ubben T, di Nauta A, Richter E, Rusch-Gerdes S, Niemann S (2011) Evaluation of Mycobacterium tuberculosis typing methods in a 4-year study in Schleswig-Holstein, northern Germany. J Clin Microbiol 49(12):4173–4178. doi:10.1128/jcm.05293-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Roetzer A, Diel R, Kohl TA, Ruckert C, Nubel U, Blom J, Wirth T, Jaenicke S, Schuback S, Rusch-Gerdes S, Supply P, Kalinowski J, Niemann S (2013) Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 10(2):e1001387. doi:10.1371/journal.pmed.1001387

    Article  PubMed  PubMed Central  Google Scholar 

  • Roisin S, Gaudin C, De Mendonca R, Bellon J, Van Vaerenbergh K, De Bruyne K, Byl B, Pouseele H, Denis O, Supply P (2016) Pan-genome multilocus sequence typing and outbreak-specific reference-based single nucleotide polymorphism analysis to resolve two concurrent Staphylococcus aureus outbreaks in neonatal services. Clin Microbiol Infect 22(6):520–526. doi:10.1016/j.cmi.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  • Roring S, Scott A, Brittain D, Walker I, Hewinson G, Neill S, Skuce R (2002) Development of variable-number tandem repeat typing of Mycobacterium bovis: comparison of results with those obtained by using existing exact tandem repeats and spoligotyping. J Clin Microbiol 40(6):2126–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg NA, Tsolaki AG, Tanaka MM (2003) Estimating change rates of genetic markers using serial samples: applications to the transposon IS6110 in Mycobacterium tuberculosis. Theor Popul Biol 63(4):347–363

    Article  PubMed  Google Scholar 

  • Sandegren L, Groenheit R, Koivula T, Ghebremichael S, Advani A, Castro E, Pennhag A, Hoffner S, Mazurek J, Pawlowski A, Kan B, Bruchfeld J, Melefors O, Kallenius G (2011) Genomic stability over 9 years of an isoniazid resistant Mycobacterium tuberculosis outbreak strain in Sweden. PLoS One 6(1):e16647. doi:10.1371/journal.pone.0016647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savine E, Warren RM, van der Spuy GD, Beyers N, van Helden PD, Locht C, Supply P (2002) Stability of variable-number tandem repeats of mycobacterial interspersed repetitive units from 12 loci in serial isolates of Mycobacterium tuberculosis. J Clin Microbiol 40(12):4561–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schurch AC, Kremer K, Kiers A, Daviena O, Boeree MJ, Siezen RJ, Smith NH, van Soolingen D (2010) The tempo and mode of molecular evolution of Mycobacterium tuberculosis at patient-to-patient scale. Infect Genet Evol 10(1):108–114. doi:10.1016/j.meegid.2009.10.002

    Article  PubMed  Google Scholar 

  • Shamputa IC, Jugheli L, Sadradze N, Willery E, Portaels F, Supply P, Rigouts L (2006) Mixed infection and clonal representativeness of a single sputum sample in tuberculosis patients from a penitentiary hospital in Georgia. Respir Res 7:99. doi:10.1186/1465-9921-7-99

    Article  PubMed  PubMed Central  Google Scholar 

  • Skrahina A, Hurevich H, Zalutskaya A, Sahalchyk E, Astrauko A, Hoffner S, Rusovich V, Dadu A, de Colombani P, Dara M, van Gemert W, Zignol M (2013) Multidrug-resistant tuberculosis in Belarus: the size of the problem and associated risk factors. Bull World Health Organ 91(1):36–45. doi:10.2471/BLT.12.104588

    Article  PubMed  Google Scholar 

  • Skuce RA, McCorry TP, McCarroll JF, Roring SM, Scott AN, Brittain D, Hughes SL, Hewinson RG, Neill SD (2002) Discrimination of Mycobacterium tuberculosis complex bacteria using novel VNTR-PCR targets. Microbiology 148(Pt 2):519–528

    Article  CAS  PubMed  Google Scholar 

  • Small PM, McClenny NB, Singh SP, Schoolnik GK, Tompkins LS, Mickelsen PA (1993a) Molecular strain typing of Mycobacterium tuberculosis to confirm cross-contamination in the mycobacteriology laboratory and modification of procedures to minimize occurrence of false-positive cultures. J Clin Microbiol 31(7):1677–1682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Small PM, Shafer RW, Hopewell PC, Singh SP, Murphy MJ, Desmond E, Sierra MF, Schoolnik GK (1993b) Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in patients with advanced HIV infection. N Engl J Med 328(16):1137–1144. doi:10.1056/NEJM199304223281601

    Article  CAS  PubMed  Google Scholar 

  • Small PM, Hopewell PC, Singh SP, Paz A, Parsonnet J, Ruston DC, Schecter GF, Daley CL, Schoolnik GK (1994) The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. N Engl J Med 330(24):1703–1709. doi:10.1056/NEJM199406163302402

    Article  CAS  PubMed  Google Scholar 

  • Smit PW, Vasankari T, Aaltonen H, Haanpera M, Casali N, Marttila H, Marttila J, Ojanen P, Ruohola A, Ruutu P, Drobniewski F, Lyytikainen O, Soini H (2014) Enhanced tuberculosis outbreak investigation using whole genome sequencing and IGRA. Eur Respir J. doi:10.1183/09031936.00125914

  • Smith NH, Hewinson RG, Kremer K, Brosch R, Gordon SV (2009) Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 7(7):537–544. doi:10.1038/nrmicro2165

    Article  CAS  PubMed  Google Scholar 

  • Smittipat N, Palittapongarnpim P (2000) Identification of possible loci of variable number of tandem repeats in Mycobacterium tuberculosis. Tuber Lung Dis 80(2):69–74. doi:10.1054/tuld.2000.0236

    Article  CAS  PubMed  Google Scholar 

  • Smittipat N, Billamas P, Palittapongarnpim M, Thong-On A, Temu MM, Thanakijcharoen P, Karnkawinpong O, Palittapongarnpim P (2005) Polymorphism of variable-number tandem repeats at multiple loci in Mycobacterium tuberculosis. J Clin Microbiol 43(10):5034–5043. doi:10.1128/JCM.43.10.5034-5043.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snider DE Jr, Jones WD, Good RC (1984) The usefulness of phage typing Mycobacterium tuberculosis isolates. Am Rev Respir Dis 130(6):1095–1099. doi:10.1164/arrd.1984.130.6.1095

    PubMed  Google Scholar 

  • Sola C, Filliol I, Legrand E, Mokrousov I, Rastogi N (2001a) Mycobacterium tuberculosis phylogeny reconstruction based on combined numerical analysis with IS1081, IS6110, VNTR, and DR-based spoligotyping suggests the existence of two new phylogeographical clades. J Mol Evol 53(6):680–689. doi:10.1007/s002390010255

    Article  CAS  PubMed  Google Scholar 

  • Sola C, Filliol I, Gutierrez MC, Mokrousov I, Vincent V, Rastogi N (2001b) Spoligotype database of Mycobacterium tuberculosis: biogeographic distribution of shared types and epidemiologic and phylogenetic perspectives. Emerg Infect Dis 7(3):390–396. doi:10.3201/eid0703.010304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreevatsan S, Pan X, Stockbauer KE, Connell ND, Kreiswirth BN, Whittam TS, Musser JM (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A 94(18):9869–9874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starks AM, Aviles E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M (2015) Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61(Suppl 3):S141–S146. doi:10.1093/cid/civ610

    Article  PubMed Central  Google Scholar 

  • Stead WW, Bates JH (1969) Primary tuberculosis from the Far East. Transmission by a veteran to two civilians. Ann Intern Med 70(4):707–711

    Article  CAS  PubMed  Google Scholar 

  • Stucki D, Ballif M, Bodmer T, Coscolla M, Maurer AM, Droz S, Butz C, Borrell S, Langle C, Feldmann J, Furrer H, Mordasini C, Helbling P, Rieder HL, Egger M, Gagneux S, Fenner L (2015) Tracking a tuberculosis outbreak over 21 years: strain-specific single-nucleotide polymorphism typing combined with targeted whole-genome sequencing. J Infect Dis 211(8):1306–1316. doi:10.1093/infdis/jiu601

    Article  PubMed  Google Scholar 

  • Stucki D, Ballif M, Egger M, Furrer H, Altpeter E, Battegay M, Droz S, Bruderer T, Coscolla M, Borrell S, Zurcher K, Janssens JP, Calmy A, Mazza Stalder J, Jaton K, Rieder HL, Pfyffer GE, Siegrist HH, Hoffmann M, Fehr J, Dolina M, Frei R, Schrenzel J, Bottger EC, Gagneux S, Fenner L (2016a) Standard genotyping overestimates transmission of mycobacterium tuberculosis among immigrants in a low-incidence country. J Clin Microbiol 54(7):1862–1870. doi:10.1128/jcm.00126-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, Fenner L, Rutaihwa L, Borrell S, Luo T, Gao Q, Kato-Maeda M, Ballif M, Egger M, Macedo R, Mardassi H, Moreno M, Vilanova GT, Fyfe J, Globan M, Thomas J, Jamieson F, Guthrie JL, Asante-Poku A, Yeboah-Manu D, Wampande E, Ssengooba W, Joloba M, Boom WH, Basu I, Bower J, Saraiva M, Vasconcellos SE, Suffys P, Koch A, Wilkinson R, Gail-Bekker L, Malla B, Ley SD, Beck HP, de Jong BC, Toit K, Sanchez-Padilla E, Bonnet M, Gil-Brusola A, Frank M, Penlap Beng VN, Eisenach K, Alani I, Ndung'u PW, Revathi G, Gehre F, Akter S, Ntoumi F, Stewart-Isherwood L, Ntinginya NE, Rachow A, Hoelscher M, Cirillo DM, Skenders G, Hoffner S, Bakonyte D, Stakenas P, Diel R, Crudu V, Moldovan O, Al-Hajoj S, Otero L, Barletta F, Carter EJ, Diero L, Supply P, Comas I, Niemann S, Gagneux S (2016b) Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 48(12):1535–1543. doi:10.1038/ng.3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suffys PN, Ivens de Araujo ME, Rossetti ML, Zahab A, Barroso EW, Barreto AM, Campos E, van Soolingen D, Kremer K, Heersma H, Degrave WM (2000) Usefulness of IS6110-restriction fragment length polymorphism typing of Brazilian strains of Mycobacterium tuberculosis and comparison with an international fingerprint database. Res Microbiol 151(5):343–351

    Article  CAS  PubMed  Google Scholar 

  • Supply P, Magdalena J, Himpens S, Locht C (1997) Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Mol Microbiol 26(5):991–1003

    Article  CAS  PubMed  Google Scholar 

  • Supply P, Mazars E, Lesjean S, Vincent V, Gicquel B, Locht C (2000) Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol 36(3):762–771

    Article  CAS  PubMed  Google Scholar 

  • Supply P, Lesjean S, Savine E, Kremer K, van Soolingen D, Locht C (2001) Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol 39(10):3563–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supply P, Warren RM, Banuls AL, Lesjean S, Van Der Spuy GD, Lewis LA, Tibayrenc M, Van Helden PD, Locht C (2003) Linkage disequilibrium between minisatellite loci supports clonal evolution of Mycobacterium tuberculosis in a high tuberculosis incidence area. Mol Microbiol 47(2): 529–538

    Article  CAS  PubMed  Google Scholar 

  • Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rusch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V, Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, van Soolingen D (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44(12):4498–4510. doi:10.1128/JCM.01392-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supply P, Niemann S, Wirth T (2011a) On the mutation rates of spoligotypes and variable numbers of tandem repeat loci of Mycobacterium tuberculosis. Infect Genet Evol 11(2):251–252. S1567-1348(10)00347-3 [pii]. doi:10.1016/j.meegid.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  • Supply P, Niemann S, Wirth T (2011b) On the mutation rates of spoligotypes and variable numbers of tandem repeat loci of Mycobacterium tuberculosis: continued-when tuning matters. Infect Genet Evol. S1567-1348(11)00093-1 [pii]. doi:10.1016/j.meegid.2011.03.012

  • Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, Majlessi L, Criscuolo A, Tap J, Pawlik A, Fiette L, Orgeur M, Fabre M, Parmentier C, Frigui W, Simeone R, Boritsch EC, Debrie AS, Willery E, Walker D, Quail MA, Ma L, Bouchier C, Salvignol G, Sayes F, Cascioferro A, Seemann T, Barbe V, Locht C, Gutierrez MC, Leclerc C, Bentley SD, Stinear TP, Brisse S, Medigue C, Parkhill J, Cruveiller S, Brosch R (2013) Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet 45(2):172–179. doi:10.1038/ng.2517

    Article  CAS  PubMed  Google Scholar 

  • Supply P, Gaudin C, Raze D (2014) Optimization of standard 24-locus variable-number tandem-repeat typing of Mycobacterium tuberculosis isolates: a multicenter perspective. J Clin Microbiol 52(9):3518–3519. doi:10.1128/JCM.01790-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka MM, Rosenberg NA (2001) Optimal estimation of transposition rates of insertion sequences for molecular epidemiology. Stat Med 20(16):2409–2420

    Article  CAS  PubMed  Google Scholar 

  • Thierry D, Brisson-Noel A, Vincent-Levy-Frebault V, Nguyen S, Guesdon JL, Gicquel B (1990a) Characterization of a Mycobacterium tuberculosis insertion sequence, IS6110, and its application in diagnosis. J Clin Microbiol 28(12): 2668–2673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thierry D, Cave MD, Eisenach KD, Crawford JT, Bates JH, Gicquel B, Guesdon JL (1990b) IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res 18(1):188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trovato A, Tafaj S, Battaglia S, Alagna R, Bardhi D, Kapisyzi P, Bala S, Haldeda M, Borroni E, Hafizi H, Cirillo DM (2016) Implementation of a consensus set of hypervariable mycobacterial interspersed repetitive-unit-variable-number tandem-repeat loci in mycobacterium tuberculosis molecular epidemiology. J Clin Microbiol 54(2):478–482. doi:10.1128/JCM.02945-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsolaki AG, Hirsh AE, DeRiemer K, Enciso JA, Wong MZ, Hannan M, Goguet de la Salmoniere YO, Aman K, Kato-Maeda M, Small PM (2004) Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci U S A 101(14):4865–4870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uzoewulu GN, Lawson L, Nnanna IS, Rastogi N, Goyal M (2016) Genetic diversity of Mycobacterium tuberculosis complex strains isolated from patients with pulmonary tuberculosis in Anambra State, Nigeria. Inte J Mycobacteriol 5(1):74–79. doi:10.1016/j.ijmyco.2015.06.008

    Article  Google Scholar 

  • van Deutekom H, Supply P, de Haas PE, Willery E, Hoijng SP, Locht C, Coutinho RA, van Soolingen D (2005) Molecular typing of Mycobacterium tuberculosis by mycobacterial interspersed repetitive unit-variable-number tandem repeat analysis, a more accurate method for identifying epidemiological links between patients with tuberculosis. J Clin Microbiol 43(9): 4473–4479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Embden JD, van Soolingen D, Small PM, Hermans PW (1992) Genetic markers for the epidemiology of tuberculosis. Res Microbiol 143(4):385–391

    Article  PubMed  Google Scholar 

  • van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM et al (1993) Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31(2):406–409

    PubMed  PubMed Central  Google Scholar 

  • Van Soolingen D (2001) Molecular epidemiology of tuberculosis and other mycobacterial infections: main methodologies and achievements. J Intern Med 249(1):1–26

    Article  PubMed  Google Scholar 

  • van Soolingen D, Qian L, de Haas PE, Douglas JT, Traore H, Portaels F, Qing HZ, Enkhsaikan D, Nymadawa P, van Embden JD (1995) Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol 33(12):3234–3238

    PubMed  PubMed Central  Google Scholar 

  • van Soolingen D, Borgdorff MW, de Haas PE, Sebek MM, Veen J, Dessens M, Kremer K, van Embden JD (1999) Molecular epidemiology of tuberculosis in the Netherlands: a nationwide study from 1993 through 1997. J Infect Dis 180(3):726–736. doi:10.1086/314930

    Article  PubMed  Google Scholar 

  • van der Zanden AG, Kremer K, Schouls LM, Caimi K, Cataldi A, Hulleman A, Nagelkerke NJ, van Soolingen D (2002a) Improvement of differentiation and interpretability of spoligotyping for Mycobacterium tuberculosis complex isolates by introduction of new spacer oligonucleotides. J Clin Microbiol 40(12):4628–4639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velji P, Nikolayevskyy V, Brown T, Drobniewski F (2009) Discriminatory ability of hypervariable variable number tandem repeat loci in population-based analysis of Mycobacterium tuberculosis strains, London, UK. Emerg Infect Dis 15(10):1609–1616. doi:10.3201/eid1510.090463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada T, Maeda S, Hase A, Kobayashi K (2007) Evaluation of variable numbers of tandem repeat as molecular epidemiological markers of Mycobacterium tuberculosis in Japan. J Med Microbiol 56(Pt 8):1052–1057. doi:10.1099/jmm.0.46990-0

    Article  CAS  PubMed  Google Scholar 

  • Walker TM, Ip CL, Harrell RH, Evans JT, Kapatai G, Dedicoat MJ, Eyre DW, Wilson DJ, Hawkey PM, Crook DW, Parkhill J, Harris D, Walker AS, Bowden R, Monk P, Smith EG, Peto TE (2013a) Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 13(2):137–146. doi:10.1016/S1473-3099(12)70277-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker TM, Monk P, Grace Smith E, Peto TE (2013b) Contact investigations for outbreaks of Mycobacterium tuberculosis: advances through whole genome sequencing. Clin Microbiol Infect. doi:10.1111/1469-0691.12183

  • Walker TM, Lalor MK, Broda A, Saldana Ortega L, Morgan M, Parker L, Churchill S, Bennett K, Golubchik T, Giess AP, Del Ojo EC, Jeffery KJ, Bowler IC, Laurenson IF, Barrett A, Drobniewski F, McCarthy ND, Anderson LF, Abubakar I, Thomas HL, Monk P, Smith EG, Walker AS, Crook DW, Peto TE, Conlon CP (2014) Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK, 2007-12, with whole pathogen genome sequences: an observational study. Lancet Respir Med 2(4):285–292. doi:10.1016/S2213-2600(14)70027-X

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker TM, Kohl TA, Omar SV, Hedge J, Del Ojo EC, Bradley P, Iqbal Z, Feuerriegel S, Niehaus KE, Wilson DJ, Clifton DA, Kapatai G, Ip CL, Bowden R, Drobniewski FA, Allix-Beguec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook DW, Smith EG, Walker AS, Ismail N, Niemann S, Peto TE (2015) Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis. doi:10.1016/S1473-3099(15)00062-6

  • Wang W, Mathema B, Hu Y, Zhao Q, Jiang W, Xu B (2014) Role of casual contacts in the recent transmission of tuberculosis in settings with high disease burden. Clin Microbiol Infect 20(11):1140–1145. doi:10.1111/1469-0691.12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren RM, Sampson SL, Richardson M, Van Der Spuy GD, Lombard CJ, Victor TC, van Helden PD (2000) Mapping of IS6110 flanking regions in clinical isolates of Mycobacterium tuberculosis demonstrates genome plasticity. Mol Microbiol 37(6): 1405–1416

    Article  CAS  PubMed  Google Scholar 

  • Warren RM, Victor TC, Streicher EM, Richardson M, van der Spuy GD, Johnson R, Chihota VN, Locht C, Supply P, van Helden PD (2004) Clonal expansion of a globally disseminated lineage of Mycobacterium tuberculosis with low IS6110 copy numbers. J Clin Microbiol 42(12):5774–5782. 42/12/5774 [pii]. doi:10.1128/JCM.42.12.5774-5782.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weniger T, Krawczyk J, Supply P, Niemann S, Harmsen D (2010) MIRU-VNTRplus: a web tool for polyphasic genotyping of Mycobacterium tuberculosis complex bacteria. Nucleic Acids Res 38(Suppl):W326–W331. doi:10.1093/nar/gkq351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2016) Global tuberculosis report. World Health Organization, Geneva

    Google Scholar 

  • Wiid IJ, Werely C, Beyers N, Donald P, van Helden PD (1994) Oligonucleotide (GTG)5 as a marker for Mycobacterium tuberculosis strain identification. J Clin Microbiol 32(5):1318–1321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams OM, Abeel T, Casali N, Cohen K, Pym AS, Mungall SB, Desjardins CA, Banerjee A, Drobniewski F, Earl AM, Cooke GS (2015) Fatal nosocomial MDR TB identified through routine genetic analysis and whole-genome sequencing. Emerg Infect Dis 21(6):1082–1084. doi:10.3201/eid2106.141903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wirth T, Hildebrand F, Allix-Beguec C, Wolbeling F, Kubica T, Kremer K, van Soolingen D, Rusch-Gerdes S, Locht C, Brisse S, Meyer A, Supply P, Niemann S (2008) Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4(9):e1000160. doi:10.1371/journal.ppat.1000160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeh RW, Ponce de Leon A, Agasino CB, Hahn JA, Daley CL, Hopewell PC, Small PM (1998) Stability of Mycobacterium tuberculosis DNA genotypes. J Infect Dis 177(4):1107–1111

    Article  CAS  PubMed  Google Scholar 

  • van der Zanden AG, Kremer K, Schouls LM, Caimi K, Cataldi A, Hulleman A, Nagelkerke NJ, van Soolingen D (2002b) Improvement of differentiation and interpretability of spoligotyping for Mycobacterium tuberculosis complex isolates by introduction of new spacer oligonucleotides. J Clin Microbiol 40(12):4628–4639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Young D (1994) Strain variation in the katG region of Mycobacterium tuberculosis. Mol Microbiol 14(2):301–308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Parts of this chapter result from research supported by a grant from the European Union’s Seventh Framework Program (FP7/2007-2013) under Grant Agreement N° 278864 in the framework of the PathoNGenTrace project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Niemann or Philip Supply .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Merker, M., Kohl, T.A., Niemann, S., Supply, P. (2017). The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. In: Gagneux, S. (eds) Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control. Advances in Experimental Medicine and Biology, vol 1019. Springer, Cham. https://doi.org/10.1007/978-3-319-64371-7_3

Download citation

Publish with us

Policies and ethics