Skip to main content

Simulations of Streamwise Vortices on a High-Lift Wing with UHBR-Engine

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics XI

Abstract

Results of numerical simulations on a high-lift configuration with an Ultra High Bypass Ratio (UHBR) engine are shown. In the area of the integrated engine, a complex vortex-system develops. Different longitudinal vortices proceed downstream on the suction side influencing the local flowfield. Steady and unsteady numerical simulations are performed at different angles of attack. As flow solver the DLR TAU Code is used and the Menter-SST eddy viscosity turbulence model and the JHh-v2 Reynolds-Stress-Model are applied. The predicted vortex system is analyzed and the effect on the flow field and the local stall behavior is shown. In particular the effect of the turbulence models of different types on the prediction of the vortex system and the flowfield is pesented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bier, N., Rohlmann, D., Rudnik, R.: Numerical Maximum Lift Prediction of a Realistic Commercial Aircraft in Landing Configuration. AIAA 2012-0279, Nashville (2012)

    Google Scholar 

  2. Cécora, R.-D., Probst, A., Radespiel, R.: Advanced Reynolds stress turbulence modeling of subsonic and transonic flows. In: Second Symposium “Simulation of Wing and Nacelle Stall”, June 22nd–23rd, Braunschweig (2010)

    Google Scholar 

  3. Cécora, R.-D., Radespiel, R., Eisfeld, B., Probst, A.: Differential Reynolds-Stress modeling for aeronautics. J. Aircr. 53(3), 739–755 (2015)

    Google Scholar 

  4. Craft, T.J., Gerasimov, A.V., Launder, B.E., Robinson, C.M.E.: A computational study of the near-field generation and decay of wingtip vortices. Int. J. Heat Fluid Flow 27, 684–695 (2006)

    Article  Google Scholar 

  5. Crippa, S., Melber-Wilkending, S., Rudnik, R.: DLR Contribution to the First High Lift Prediction Workshop. AIAA 2011-938, Orlando (2011)

    Google Scholar 

  6. Eliasson, P., Catalano, P, Le Pape, M.-C., Ortmann, J., Pelizzari, E., Ponsin, J.: Improved CFD Predictions for High Lift Flows in the European Project EUROLIFT II. AIAA 2007-4303, Miami (2007)

    Google Scholar 

  7. Frhr. v. Geyr, H., Schade, N., v. d. Burg, J.W., Eliasson, P., Esquieu, S.: CFD Prediction of Maximum Lift Effects on Realistic High-Lift-Commercial-Aircraft-Configurations Within the European Project EUROLIFT II. AIAA 2007-4299, Miami (2007)

    Google Scholar 

  8. Haines, A.B., Young, A.D.: Scale effects on aircraft and weapon aerodynamic. AGARDograph 323, 27–65 (1994)

    Google Scholar 

  9. Jakirlic, S., Hanjalic, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 459, 139–166 (2002)

    Article  MATH  Google Scholar 

  10. Landa, T., Wild, J., Radespiel, R.: Simulation of longitudinal vortices on a high-lift wing. In: Radespiel, R., et al. (eds.) Advances in Simulation of Wing and Nacelle Stall. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 131, pp. 351–366. Springer. ISBN 978-3-319-21126-8 (2016)

    Google Scholar 

  11. Landa, T., Radespiel, R., Wild, J.: Numerical Simulations of Streamwise Vortices on a Generic High-Lift Configuration. AIAA 2016-0304, San Diego (2016)

    Google Scholar 

  12. Landa, T., Wild, J., Radespiel, R.: Numerical simulations of streamwise vortices on a high-lift wing. CEAS Aeronaut. J. (2016). https://doi.org/10.1007/s13272-016-0217-0

  13. Langer, S., Schwöppe, A., Kroll, N.: The DLR Flow Solver TAU—Status and Recent Algorithmic Developments. AIAA 2014-0080, National Harbor (2014)

    Google Scholar 

  14. Menter, F.R.: Zonal Two Equation k-\(\omega \) Turbulence Models for Aerodynamic Flows. AIAA 93-2906, Orlando (1993)

    Google Scholar 

  15. Probst, A., Radespiel, R.: Implementation and Extension of a Near-Wall Reynolds-Stress Model for Application to Aerodynamic Flows on Unstructured Meshes. AIAA 2008-770, Reno (2008)

    Google Scholar 

  16. Probst, A., Radespiel, R., Rist, U.: Linear-stability-based transition modeling for aerodynamic flow simulations with a near-wall Reynolds-Stress model. AIAA J. 50(2), 416–428 (2012)

    Article  Google Scholar 

  17. Ritter, S.: Impact of different UHBR-Engine positions on the aerodynamics of a high-lift-wing. In: Radespiel, R., et al. (eds.) Advances in Simulation of Wing and Nacelle Stall. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 131, pp. 367–380. Springer. ISBN 978-3-319-21126-8 (2016)

    Google Scholar 

  18. Rudnik, R., Frhr. v. Geyr, H.: The European High Lift Project EUROLIFT II—Objectives, Approach, and Structure. AIAA 2007-4296, Miami (2007)

    Google Scholar 

  19. Rudnik, R., Reckzeh, D., Quest, J.: HINVA—High Lift INflight Validation—Project Overview and Status. AIAA 2012-0106, Nashville (2012)

    Google Scholar 

  20. Rudolph, P.K.C.: High-Lift Systems on Commercial Subsonic Airliners. NASA CR 4746 (1996)

    Google Scholar 

  21. Sclafani, A.J., Slotnick, J.P., Vassberg, J.C., Pulliam, T.H., Lee, H.C.: Overflow Analysis of the NASA Trap Wing Model from the First High Lift Prediction Workshop. AIAA 2011-866, Orlando (2011)

    Google Scholar 

  22. Smith, A.M.O.: High lift aerodynamics. J. Aircr. 12(6), 501–530 (1975)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the German Federal Ministry for Economic Affairs and Energy (BMWi) for funding this research activity (grant number: 20A1301B). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the BMWi or the German government. Furthermore, the authors would like to thank the North-German Supercomputing Alliance (HLRN) for providing computational resources within the project nii00091.

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Landa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Landa, T., Radespiel, R., Ritter, S. (2018). Simulations of Streamwise Vortices on a High-Lift Wing with UHBR-Engine. In: Dillmann, A., et al. New Results in Numerical and Experimental Fluid Mechanics XI. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-319-64519-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64519-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64518-6

  • Online ISBN: 978-3-319-64519-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics