Skip to main content

Progressive Probabilistic Graph Matching with Local Consistency Regularization

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10425))

Included in the following conference series:

  • 1778 Accesses

Abstract

Graph matching has attracted extensive attention in computer vision due to its powerful representation and robustness. However, its combinatorial nature and computational complexity limit the size of input graphs. Most graph matching methods initially reconstruct the graphs, while the preprocessing often results in poor performance. In this paper, a novel progressive probabilistic model is proposed in order to handle the outliers and boost the performance. This model takes advantage of the cooperation between process of correspondence enrichment and graph matching. Candidate matches are propagated with local consistency regularization in a probabilistic manner, and unreliable ones are rejected by graph matching. Experiments on two challenging datasets demonstrate that the proposed model outperforms the state-of-the-art progressive method in challenging real-world matching tasks.

This project was supported by Shenzhen Peacock Plan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that in this paper we use \(\texttt {x}_{ij}\) to denote \(\texttt {x}_{(i-1){n_2}+j}\).

References

  1. Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88688-4_44

    Chapter  Google Scholar 

  2. Cho, M., Alahari, K., Ponce, J.: Learning graphs to match. In: ICCV (2013)

    Google Scholar 

  3. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18, 265–298 (2004)

    Google Scholar 

  4. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: ICCV (2005)

    Google Scholar 

  5. Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: NIPS (2006)

    Google Scholar 

  6. Leordeanu, M., Herbert, M.: An integer projected fixed point method for graph matching and map inference. In: NIPS (2009)

    Google Scholar 

  7. Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 492–505. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15555-0_36

    Chapter  Google Scholar 

  8. Suh, Y., Cho, M., Lee, K.M.: Graph matching via sequential Monte Carlo. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 624–637. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33712-3_45

    Chapter  Google Scholar 

  9. Cho, M., Sun, J., Duchenne, O., Ponce, J.: Finding matches in a haystack: a max-pooling strategy for graph matching in the presence of outliers. In: CVPR (2014)

    Google Scholar 

  10. Cho, M., Lee, K.M.: Progressive graph matching: making a move of graphs via probabilistic voting. In: CVPR (2012)

    Google Scholar 

  11. Wang, C., Wang, L., Liu, L.: Progressive mode-seeking on graphs for sparse feature matching. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 788–802. Springer, Cham (2014). doi:10.1007/978-3-319-10605-2_51

    Google Scholar 

  12. Ham, B., Cho, M., Schmid, C., Ponce, J.: Proposal flow. In: CVPR (2016)

    Google Scholar 

  13. Lopuhaa, H.P., Rousseeuw, P.J.: Breakdown points of affine equivariant estimators of multivariate location and covariance matrices. Ann. Stat. 19(1), 229–248 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chandrasekaran, R., Tamir, A.: Open questions concerning Weiszfeld algorithm for the Fermat-Weber location problem. Math. Program. 44, 293–295 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenmin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tang, M., Wang, W. (2017). Progressive Probabilistic Graph Matching with Local Consistency Regularization. In: Felsberg, M., Heyden, A., Krüger, N. (eds) Computer Analysis of Images and Patterns. CAIP 2017. Lecture Notes in Computer Science(), vol 10425. Springer, Cham. https://doi.org/10.1007/978-3-319-64698-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64698-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64697-8

  • Online ISBN: 978-3-319-64698-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics