Skip to main content

Scaling and Inverse Scaling in Anisotropic Bootstrap Percolation

  • Chapter
  • First Online:
Probabilistic Cellular Automata

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 27))

  • 1659 Accesses

Abstract

In bootstrap percolation, it is known that the critical percolation threshold tends to converge slowly to zero with increasing system size, or, inversely, the critical size diverges fast when the percolation probability goes to zero. To obtain higher-order terms (i.e. sharp and sharper thresholds) for the percolation threshold in general is a hard question. In the case of two-dimensional anisotropic models, sometimes such correction terms can be obtained from inversion in a relatively simple manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Harris, A.B., Schwarz, J.M.: \( \frac{1}{d}\) expansion for \(k\)-core percolation. Phys. Rev. E 72, 046123 (2005)

    Article  Google Scholar 

  2. Kozma, R.: Neuropercolation. http://www.scholarpedia.org/article/Neuropercolation

  3. Kozma, R., Puljic, M., Balister, P., Bollobas, B., Freeman, W.J.: Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol. Cybern. 92, 367–379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Toninelli, C.: Bootstrap and jamming percolation. In: Bouchaud, J.P., Mézard, M., Dalibard, J. (eds.) Les Houches school on Complex Systems, Session LXXXV, pp. 289–308 (2006)

    Google Scholar 

  5. Eckman, J.P., Moses, E., Stetter, E., Tlusty, T., Zbinden, C.: Leaders of neural cultures in a quorum percolation model. Front. Comput. Neurosci. 4, 132 (2010)

    Google Scholar 

  6. Adler, J., Aharony, A.: Diffusion percolation: infinite time limit and bootstrap percolation. J. Phys. A 21, 1387–1404 (1988)

    Article  MathSciNet  Google Scholar 

  7. Aizenman, M., Lebowitz, J.L.: Metastability effects in bootstrap percolation. J. Phys. A 21, 3801–3813 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Adler, J.: Bootstrap percolation. Phys. A 171, 452–470 (1991)

    Article  Google Scholar 

  9. Lenormand, R., Zarcone, C.: Growth of clusters during imbibition in a network of capillaries. In: Family, F., Landau, D.P. (eds.) Kinetics of Aggregation and Gelation, pp. 177–180. Elsevier, Amsterdam (1984)

    Chapter  Google Scholar 

  10. Amini, H.: Bootstrap percolation in living neural networks. J. Stat. Phys. 141, 459–475 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eckman, J.P., Tlusty, T.: Remarks on bootstrap percolation in metric networks. J. Phys. A Math. Theor. 42, 205004 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Connelly, R., Rybnikov, K., Volkov, S.: Percolation of the loss of tension in an infinite triangular lattice. J. Stat. Phys. 105, 143–171 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lee, I.H., Valentiniy, A.: Noisy contagion without mutation. Rev. Econ. Stud. 67, 47–67 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bollobas, B.: The Art of mathematics: Coffee Time in Memphis, Problems 34 and 35. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  15. New York Times Wordplay Blog (8 July 2013). http://wordplay.blogs.nytimes.com/2013/07/08/bollobas/

  16. Winkler, P.: Mathematical Puzzles. A.K. Peters Ltd, p. 79 (2004)

    Google Scholar 

  17. Winkler, P.: Mathematical Mindbenders, A.K. Peters Ltd, p. 91 (2007)

    Google Scholar 

  18. van Enter, A.C.D.: Proof of Straley’s argument for bootstrap percolation. J. Stat. Phys. 48, 943–945 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schonmann, R.H.: On the behavior of some cellular automata related to bootstrap percolation. Ann. Probab. 20, 174–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cerf, R., Cirillo, E.: Finite size scaling in three-dimensional bootstrap percolation. Ann. Prob. 27(4), 1837–1850 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cerf, R., Manzo, F.: The threshold regime of finite volume bootstrap percolation. Stoch. Process. Appl. 101, 69–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Balogh, J., Bollobas, B., Morris, R.: Bootstrap percolation in three dimensions. Ann. Probab. 37, 1329–1380 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Balogh, J., Bollobas, B., Duminil-Copin, H., Morris, R.: The sharp threshold for bootstrap percolation in all dimensions. Trans. Am. Math. Soc. 364, 2667–2701 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Holroyd, A.E.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Relat. Fields 125, 195–224 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Holroyd, A.E.: The metastability threshold for modified bootstrap percolation in d dimensions. Electron. J. Probab. 11(17), 418–433 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Morris, R.: The second term for bootstrap percolation in two dimensions. Manuscript in preparation. http://w3.impa.br/~rob/index.html

  27. Gravner, J., Holroyd, A.E.: Slow convergence in bootstrap percolation. Ann. Appl. Probab. 18, 909–928 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gravner, J., Holroyd, A.E., Morris, R.: A sharper threshold for bootstrap percolation in two dimensions. Probab. Theory Relat. Fields 153, 1–23 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Uzzell, A.E.: An improved upper bound for bootstrap percolation in all dimensions (2012). arXiv:1204.3190

  30. Adler, J., Lev, U.: Bootstrap percolation: visualisations and applications. Braz. J. Phys. 33, 641–644 (2003)

    Article  Google Scholar 

  31. de Gregorio, P., Lawlor, A., Bradley, P., Dawson, K.A.: Clarification of the bootstrap percolation paradox. Phys. Rev. Lett. 93, 025501 (2004)

    Article  Google Scholar 

  32. Balogh, J., Bollobas, B.: Sharp thresholds in bootstrap percolation. Phys. A 326, 305–312 (2003)

    Article  MATH  Google Scholar 

  33. Duminil-Copin, H., Holroyd, A.E.: Finite volume bootstrap percolation with balanced threshold rules on \({\mathbb{Z}}^2\). Preprint (2012). http://www.unige.ch/duminil/

  34. Gravner, J., Griffeath, D.: First passage times for threshold growth dynamics on \(\mathbb{Z}^2\). Ann. Probab. 24, 1752–1778 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bollobás, B., Duminil-Copin, H., Morris, R., Smith, P.: The sharp threshold for the Duarte model. Ann. Probab. To appear (2016). arXiv:1603.05237

  36. van Enter, A.C.D., Fey, A.: Metastability thresholds for anisotropic bootstrap percolation in three dimensions. J. Stat. Phys. 147, 97–112 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Duarte, J.A.M.S.: Simulation of a cellular automaton with an oriented bootstrap rule. Phys. A 157, 1075–1079 (1989)

    Article  Google Scholar 

  38. Adler, J., Duarte, J.A.M.S., van Enter, A.C.D.: Finite-size effects for some bootstrap percolation models. J. Stat. Phys. 60, 323–332 (1990); Addendum. J. Stat. Phys. 62, 505–506 (1991)

    Google Scholar 

  39. Mountford, T.S.: Critical lengths for semi-oriented bootstrap percolation. Stoch. Proc. Appl. 95, 185–205 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schonmann, R.H.: Critical points of 2-dimensional bootstrap percolation-like cellular automata. J. Stat. Phys. 58, 1239–1244 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. van Enter, A.C.D., Hulshof, W.J.T.: Finite-size effects for anisotropic bootstrap percolation: logarithmic corrections. J. Stat. Phys. 128, 1383–1389 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Duminil-Copin, H., van Enter, A.C.D., Hulshof, W.J.T.: Higher order corrections for anisotropic bootstrap percolation. Prob. Th. Rel. Fields. arXiv:1611.03294 (2016)

  43. Duminil-Copin, H., van Enter, A.C.D.: Sharp metastability threshold for an anisotropic bootstrap percolation model. Ann. Prob. 41, 1218–1242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Boerma-Klooster, S.: A sharp threshold for an anisotropic bootstrap percolation model. Groningen bachelor thesis (2011)

    Google Scholar 

  45. Gray, L.: A mathematician looks at Wolfram’s new kind of science. Not. Am. Math. Soc. 50, 200–211 (2003)

    MATH  Google Scholar 

  46. Bringmann, K., Mahlburg, K.: Improved bounds on metastability thresholds and probabilities for generalized bootstrap percolation. Trans. Am. Math. Soc. 364, 3829–2859 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Bringmann, K., Mahlburg, K., Mellit, A.: Convolution bootstrap percolation models, Markov-type stochastic processes, and mock theta functions. Int. Math. Res. Not. 2013, 971–1013 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Froböse, K.: Finite-size effects in a cellular automaton for diffusion. J. Stat. Phys. 55, 1285–1292 (1989)

    Article  MathSciNet  Google Scholar 

  49. Holroyd, A.E., Liggett, T.M., Romik, D.: Integrals, partitions and cellular automata. Trans. Am. Math. Soc. 356, 3349–3368 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Bollobás, B., Smith, P., Uzzell, A.: Monotone cellular automata in a random environment. Comb. Probab. Comput. 24(4), 687–722 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Balogh, J., Bollobas, B., Pete, G.: Bootstrap percolation on infinite trees and non-amenable groups. Comb. Probab. Comput. 15, 715–730 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  52. Bollobás, B., Gunderson, K., Holmgren, C., Janson, S., Przykucki, M.: Bootstrap percolation on Galton-Watson trees El. J. Prob. 19, 13 (2014)

    MATH  Google Scholar 

  53. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J. Phys. C 12, L31 (1979)

    Article  Google Scholar 

  54. Schwarz, J.M., Liu, A.J., Chayes, L.Q.: The onset of jamming as the sudden emergence of an infinite k-core cluster. Europhys. Lett. 73, 560–566 (2006)

    Article  Google Scholar 

  55. Balogh, J., Pittel, B.G.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30, 257–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giant k-core. J. Comb. Theory B 67, 111–151 (1996)

    Article  MATH  Google Scholar 

  57. Sausset, F., Toninelli, C., Biroli, G., Tarjus, G.: Bootstrap percolation and kinetically constrained models on hyperbolic lattices. J. Stat. Phys. 138, 411–430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Bouchaud, J.P., Cipelletti, L., van Saarloos, W.: In: Berthier, L. (ed.) Dynamic Heterogeneities in glasses, Colloids, and Granular Media. Oxford University Press, Oxford (2011)

    Google Scholar 

  59. Jeng, M., Schwarz, J.M.: On the study of jamming percolation. J. Stat. Phys. 131, 575–595 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Toninelli, C., Biroli, G.: A new class of cellular automata with a discontinuous glass transition. J. Stat. Phys. 130, 83–112 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank the organisers for their invitation to talk at the 2013 EURANDOM meeting on Probabilistic Cellular Automata, and I thank my colleagues and co-workers, Joan Adler, Jose Duarte, Hugo Duminil-Copin, Anne Fey-den Boer, Tim Hulshof and Rob Morris, as well as Susan Boerma-Klooster and Roberto Schonmann, for all they taught me. I thank Rob Morris for correcting me on the (1, b)-constant. Moreover, I thank Tim Hulshof for helpful advice on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aernout C. D. van Enter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Enter, A.C.D. (2018). Scaling and Inverse Scaling in Anisotropic Bootstrap Percolation. In: Louis, PY., Nardi, F. (eds) Probabilistic Cellular Automata. Emergence, Complexity and Computation, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-65558-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65558-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65556-7

  • Online ISBN: 978-3-319-65558-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics