Skip to main content

Elastic and Viscoelastic Properties of Fibre- and Particle-Reinforced Composites

  • Chapter
  • First Online:
Asymptotical Mechanics of Composites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 77))

  • 780 Accesses

Abstract

It is known in industry that in order to increase stiffness and loading ability of materials it is suitable to reinforce the material by fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christensen, R.M. 2005. Mechanics of composite materials. Mineola, New York: Dover Publications.

    Google Scholar 

  2. Williams, J.L., and J.L. Lewis. 1982. Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. Transactions of the ASME Journal of Biomechanical Engineering 104 (1): 50–56.

    Article  Google Scholar 

  3. Gibson, L.J., and M.F. Ashby. 1997. Cellular solids: Structures and properties. Oxford: Pergamon Press.

    Book  MATH  Google Scholar 

  4. Keaveny, T.M. 2001. Strength of trabecular bone. In Bone mechanics handbook, ed. S.C. Cowin, 16–42. Boca Raton: CRC Press.

    Google Scholar 

  5. Kopperdahl, D.L., and T.M. Keaveny. 1998. Yield strain behaviour of trabecular bone. Journal of Biomechanics 31: 601–608.

    Article  Google Scholar 

  6. Mullender, M.G., and R. Huiskes. 1995. Proposal for the regulatory mechanism of Wolff’s law. Journal of Orthopaedic Research 13: 503–512.

    Article  Google Scholar 

  7. Mullender, M.G., R. Huiskes, and H. Weinans. 1994. A physiological approach to the simulation of bone remodelling as a self-organizational control process. Journal of Biomechanics 27: 1389–1394.

    Article  Google Scholar 

  8. Smith, T.S., R.B. Martin, M. Hubbard, and B.K. Bay. 1997. Surface remodelling of trabecular bone using a tissue level model. Journal of Orthopaedic Research 15: 593–600.

    Article  Google Scholar 

  9. Vanin, G.A. 1985. Micromechanics of composite materials. Kyiv (in Russian): Naukova Dumka.

    Google Scholar 

  10. Hyer, M.W. 1998. Stress analysis of fiber-reinforced composite materials (with contributions on fibers, matrices interfaces and manufacturing by S.R. White). Boston: McGraw-Hill.

    Google Scholar 

  11. Hashin, Z. 1983. Analysis of composite materials—A survey. Journal of Applied Mechanics 50: 481–505.

    Article  MATH  Google Scholar 

  12. Berlin, A.A., S.A. Wolfson, V.G. Oshmyan, and N.S. Enikolopyan. 1990. Principles for polymer composites design. Moscow (in Russian): Chemistry.

    Google Scholar 

  13. Bakhvalov, N., and G. Panasenko. 1989. Homogenisation: Averaging processes in periodic media mathematical problems in mechanics of composite materials. Dordrecht: Kluwer.

    Google Scholar 

  14. Berlyand, L.V., and V. Mityushev. 2001. Generalized Clausius-Mossotti formula for random composite with circular fibres. Journal of Statistical Physics 102: 115–145.

    Article  MATH  MathSciNet  Google Scholar 

  15. Berlyand, L., and V. Mityushev. 2005. Increase and decrease of the effective conductivity of two phase composites due to polydispersity. Journal of Statistical Physics 118: 481–509.

    Article  MATH  MathSciNet  Google Scholar 

  16. Craster, R.V. 2000. On effective resistivity and related parameters for periodic checkerboard composites. Proceedings of the Royal Society of London Series A 456: 2741–2754.

    Google Scholar 

  17. Dykhne, A.M. 1970. Conductivity of a two-dimensional system. Soviet Physics JETP 32: 63–65.

    Google Scholar 

  18. Keller, J.B. 1963. Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders. Journal of Applied Physics 34: 991–993.

    Article  MATH  Google Scholar 

  19. Obnosov, YuV. 1996. Exact solution of a boundary-value problem for a rectangular checkerboard field. Proceedings of the Royal Society of London Series A 452: 2423–2442.

    Google Scholar 

  20. Wojnar, R. 1997. On elastic moduli of a two dimensional two phase system. ZAMM-Journal of Applied Mathematics and Mechanics 77 (2): S469–S472.

    Google Scholar 

  21. Abramowitz, M., and I.A. Stegun (eds.). 1965. Handbook of mathematical functions, with formulas, graphs, and mathematical tables. New York: Dover Publications.

    MATH  Google Scholar 

  22. Love, A.E.H. 1944. A treatise on the mathematical theory of elasticity. New York: Dover Publications.

    MATH  Google Scholar 

  23. Christensen, R.M. 2003. Theory of viscoelasticity. Mineola, New York: Dover Publications.

    Google Scholar 

  24. Brüller, S.O., and D. Pütz. 1975. Einfache temperatur- und spannungsabhängige Bestimmungsgleichungen für das Kriechen von Polymeren. Rheologica Acta 15: 143–147.

    Article  Google Scholar 

  25. Milton, G.W. 2002. The theory of composites. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  26. Milton, G.W., R.C. McPhedran, and D.R. McKenzie. 1981. Transport properties of arrays of intersecting cylinders. Applied Physics 25: 23–30.

    Article  Google Scholar 

  27. Christensen, R.M., and K.H. Lo. 1979. Solutions for effective shear properties in three phase and cylinder models. Journal of the Mechanics and Physics of Solids 27: 315–330.

    Article  MATH  Google Scholar 

  28. Hashin, Z. 1962. The elastic moduli of heterogeneous materials. Journal of Applied Mechanics 29: 143–150.

    Article  MATH  MathSciNet  Google Scholar 

  29. Richard, T.G. 1975. The mechanical behavior of a solid microsphere filled composite. Journal of Composite Materials 9: 108–113.

    Article  Google Scholar 

  30. Chen, H.-S., and A. Acrivos. 1978. The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations. The International Journal of Solids and Structures 14: 349–364.

    Article  MATH  Google Scholar 

  31. Krieger, I.M. 1972. Rheology of monodisperse lattices. Advances in Colloid and Interface Science 3: 111–136.

    Article  Google Scholar 

  32. Frankel, N.A., and A. Acrivos. 1967. On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science 22: 847–853.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor V. Andrianov , Jan Awrejcewicz or Vladyslav V. Danishevskyy .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrianov, I.V., Awrejcewicz, J., Danishevskyy, V.V. (2018). Elastic and Viscoelastic Properties of Fibre- and Particle-Reinforced Composites. In: Asymptotical Mechanics of Composites. Advanced Structured Materials, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-65786-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65786-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65785-1

  • Online ISBN: 978-3-319-65786-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics