Skip to main content

Finite Element Heterogeneous Multiscale Method for Time-Dependent Maxwell’s Equations

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 119))

Abstract

We propose a Finite Element Heterogeneous Multiscale Method (FE-HMM) for time dependent Maxwell’s equations in second-order formulation in locally periodic materials. This method can approximate the effective behavior of an electromagnetic wave traveling through a highly oscillatory material without the need to resolve the microscopic details of the material. To prove an a-priori error bound for the semi-discrete FE-HMM scheme, we need a new generalization of a Strang-type lemma for second-order hyperbolic equations. Finally, we present a numerical example that is in accordance with the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Abdulle, The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs. GAKUTO Int. Ser. Math. Sci. Appl. 31, 133–181 (2009)

    MATH  MathSciNet  Google Scholar 

  2. A. Abdulle, M.J. Grote, Finite element heterogeneous multiscale method for the wave equation. Multiscale Model. Simul. 9(2), 766–792 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Abdulle, W. E, B. Engquist, E. Vanden-Eijnden, The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012)

    Google Scholar 

  4. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Bensoussan, J.L. Lions, G. Papanicolaou, Asymptotic analysis for periodic structures, in Studies in Mathematics and its Applications, vol. 5 (North-Holland Publishing Co., Amsterdam/New York, 1978)

    Google Scholar 

  6. V.T. Chu, V.H. Hoang, High-dimensional finite elements for multiscale Maxwell-type equations. IMA J. Numer. Anal. drx001 (2017, Online). doi:https://doi.org/10.1093/imanum/drx001

  7. P.G. Ciarlet, The finite element method for elliptic problems, in Classics in Applied Mathematics, vol. 40 (SIAM, Philadelphia, 2002)

    Google Scholar 

  8. P. Ciarlet Jr., J. Zou, Fully discrete finite element approaches for time-dependent Maxwell’s equations. Numer. Math. 82(2), 193–219 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Ciarlet Jr., S. Fliss, C. Stohrer, On the approximation of electromagnetic fields by edge finite elements. Part 2: a heterogeneous multiscale method for Maxwell’s equations. Comput. Math. Appl. 73(9), 1900–1919 (2017)

    Google Scholar 

  10. L.C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 1998)

    Google Scholar 

  11. F. Hecht, New development in FreeFem++. J. Numer. Math. 20(3–4), 25–265 (2012)

    MATH  MathSciNet  Google Scholar 

  12. P. Henning, M. Ohlberger, B. Verfürth, A new heterogeneous multiscale method for time-harmonic Maxwell’s equations. SIAM J. Numer. Anal. 54(6), 3493–3522 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  13. V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, Berlin, 1994)

    Book  Google Scholar 

  14. J.L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, vol. 181 (Springer, New York/Heidelberg, 1972)

    Google Scholar 

  15. P.A. Markowich, F. Poupaud, The Maxwell equation in a periodic medium: Homogenization of the energy density. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23(2), 301–324 (1996)

    Google Scholar 

  16. P. Monk, Analysis of a finite element method for Maxwell’s equations. SIAM J. Numer. Anal. 29(3), 714–729 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University Press, Oxford, 2003)

    Book  MATH  Google Scholar 

  18. N. Wellander, Homogenization of the Maxwell equations: Case I. Linear theory. Appl. Math. 46(1), 29–51 (2001)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173 and the Klaus Tschira Stiftung. In addition we thank the anonymous referee for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Stohrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hochbruck, M., Stohrer, C. (2017). Finite Element Heterogeneous Multiscale Method for Time-Dependent Maxwell’s Equations. In: Bittencourt, M., Dumont, N., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Lecture Notes in Computational Science and Engineering, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-65870-4_18

Download citation

Publish with us

Policies and ethics