Skip to main content

Innovative PET and SPECT Tracers

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging

Abstract

Although suitable radiotracers are available for many clinical applications in emission tomography such as SPECT and PET, improved tracers are required for advanced nuclear medical imaging. But their development remains a challenge. The demand for new tracers arises from recent progress in the development of imaging techniques and innovations in isotope production. Particularly the latter has triggered an interest in hitherto less favored radionuclides for routine applications of nuclear medical imaging. Since most new tracers are radioactive metals, the coordination chemistry of some of the elements of interest needs to be extended to meet the specific requirements that apply to the preparation of radioactive pharmaceuticals.

New tracers for SPECT and PET are typically developed for one or more of the following reasons: (a) to optimize (frequently multidentate) ligand structures for specific radiometal ions, (b) to develop multiuse ligands for the complexation of multiple metal ions, (c) to search for convenient coupling strategies for bioconjugates, and (d) to provide agents for theranostic solutions. This chapter gives an overview of strategies in radiochemistry and tracer development for nuclear medical imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rao J, Contag CH. More chemistry is needed for molecular imaging. Bioconjug Chem. 2016;27:265–6.

    Article  CAS  PubMed  Google Scholar 

  2. Kuntic V, Brboric J, Vujic Z, Uskokovic-Markovic S. Radioisotopes used as radiotracers for in vitro and in vivo diagnostics. Asian J Chem. 2016;28:235–41.

    Article  CAS  Google Scholar 

  3. Alshaabi Y. Radioisotopes in medicine therapeutic techniques. http://www.world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-medicine.aspx, updated December 2016.

  4. Bartholomä MD, Louie AS, Valliant JF, Zubieta J. Technetium and gallium derived radiopharmaceuticals: comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chem Rev. 2010;110:2903–20.

    Article  PubMed  Google Scholar 

  5. Dilworth JR, Pascu SI. The radiopharmaceutical chemistry of technetium and rhenium. In: Long N, Wong W-T, editors. The chemistry of molecular imaging. New York: Wiley; 2015.

    Google Scholar 

  6. Abram U, Alberto R. Technetium and rhenium - coordination chemistry and nuclear medical applications. J Braz Chem Soc. 2006;17:1486–500.

    Article  CAS  Google Scholar 

  7. Roeda D, Dolle F. Recent developments in the chemistry of [18F]fluoride for PET. In: Long N, Wong W-T, editors. The chemistry of molecular imaging. New York: Wiley; 2015.

    Google Scholar 

  8. Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem. 2015;26:1–18.

    Article  CAS  PubMed  Google Scholar 

  9. Preshlock S, Tredwell M, Gouverneur V. 18F-Labeling of arenes and heteroarenes for applications in positron emission tomography. Chem Rev. 2016;115:719–66.

    Google Scholar 

  10. Miller PW, Kato K, Langstrom B. Carbon-11, nitrogen-13, and oxygen-15 chemistry: an introduction to chemistry with short-lived radioisotopes. In: Long N, Wong W-T, editors. The chemistry of molecular imaging. New York: Wiley; 2015.

    Google Scholar 

  11. Campbell MC, Ritter T. Modern carbon–fluorine bond forming reactions for aryl fluoride synthesis. Chem Rev. 2015;115:612–33.

    Article  CAS  PubMed  Google Scholar 

  12. Neumann CN, Ritter T. Late-stage fluorination: fancy novelty or useful tool? Angew Chem Int Ed. 2015;54:3216–21.

    Article  CAS  Google Scholar 

  13. Cai L, Lu S, Pike VW. Chemistry with [18F] fluoride. Eur J Org Chem. 2008;39:2853–73.

    Article  Google Scholar 

  14. Mori T, Kasamatsu S, Mosdzianowski C, Welch MJ, Yonekura Y, Fujibayashi Y. Automatic synthesis of 16α-[18F]-fluoro-17β-estradiol using a cassette-type [18F]-fluorodeoxyglucose synthesizer. Nucl Med Biol. 2006;33:281–6.

    Google Scholar 

  15. Gründler G, Siessmeier T, Lange-Asschenfeld C, Vernaleken I, Buchholz HG, Stoeter P, Drzezga A, Lüddens H, Rösch F, Bartenstein P. [18F]-Fluoroethylflumazenil: a novel tracer for PET imaging of human benzodiazepine receptors. Eur J Nucl Med. 2001;28:1463–70.

    Google Scholar 

  16. Haslop A, Wells L, Gee A, Plisson C, Long N. One-pot multi-tracer synthesis of novel 18F-labeled PET imaging agents. Mol Pharm. 2014;11:3818–22.

    Google Scholar 

  17. Bergman J, Solin O. Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl Med Biol. 1997;24:677–83.

    Article  CAS  PubMed  Google Scholar 

  18. Teare H, Robins EG, Kirjavainen A, Forsback S, Sandford G, Solin O, Luthra SK, Gouverneur V. Radiosynthesis and evaluation of [18F]-Selectfluor bis(triflate). Angew Chem Int Ed Engl. 2010;49:6821–924.

    Google Scholar 

  19. Lee E, Kamlet AS, Powers DC, Neumann CN, Boursalian GB, Furuya T, Choi DC, Hooker JM, Ritter T. A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science. 2011;334:639–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kamlet AS, Neumann CN, Lee E, Carlin SM, Moseley CK, Stephenson N, Hooker JM, Ritter T. Application of palladium-mediated (18)F-fluorination to PET radiotracer development: overcoming hurdles to translation. PLoS One. 2013;8(3):e59187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee E, Hooker JM, Ritter T. Nickel-mediated oxidative fluorination for PET with aqueous [18F] fluoride. J Am Chem Soc. 2012;134:17456–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ren H, Wey H-Y, Strebl M, Neelamegam R, Ritter T, Hooker JM. Synthesis and imaging validation of [18F]-MDL100907 enabled by Ni-mediated fluorination. ACS Chem Neurosci. 2014;5:611–5.

    Google Scholar 

  23. Zlatopolskiy BD, Zischler J, Urusova EA, Endepols H, Kordys E, Frauendorf H, Mattaghy FM, Neumaier BA. A practical one-pot synthesis of positron emission tomography (PET) tracers via nickel-mediated radiofluorination. Chemistry Open. 2015;4:457–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tredwell M, Preshlock SM, Taylor NJ, Gruber S, Huiban M, Passchier J, Mercier J, Genicot C, Gouverneur VA. A general copper-mediated nucleophilic 18F fluorination of arenes. Angew Chem Int Ed Engl. 2014;53:7751–5.

    Google Scholar 

  25. Niwa T, Ochiai H, Watanabe Y, Hosoya T. Ni/cu-catalyzed defluoroborylation of fluoroarenes for diverse C–F bond functionalizations. J Am Chem Soc. 2015;137:14313–8.

    Article  CAS  PubMed  Google Scholar 

  26. Mossine AV, Brooks AF, Makaravage KJ, Miller JM, Ichiishi N, Sanford MS, Scott PJH. Synthesis of [18F]-arenes via the copper-mediated [18F]-fluorination of boronic acids. Org Lett. 2015;17:5780–3.

    Google Scholar 

  27. Huisgens R. 1,3-Dipolare cycloadditions. Proc Chem Soc. 1961:357–96.

    Google Scholar 

  28. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl. 2001;40:2004–21.

    Article  CAS  PubMed  Google Scholar 

  29. Meyer J-P, Adumeau P, Lewis JS, Zeglis BM. Click chemistry and radiochemistry: the first 10 years. Bioconjug Chem. 2016;27:2791–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tollefson J. Reactor shutdown threatens world’s medical-isotope supply. Nature. 2016. https://doi.org/10.1038/nature.2016.20577.

  31. Price EW, Orvig C. Chemistry of inorganic nuclides (86Y, 68Ga, 64Cu 89Zr 124I). In: Long N, Wong W-T, editors. The chemistry of molecular imaging. New York: Wiley; 2015.

    Google Scholar 

  32. Chakravarty R, Chakraborty S, Ram R, Vatsa R, Bhusari P, Shukla J, Mittal BR, Dash A. Detailed evaluation of different (68)Ge/(68)Ga generators: an attempt toward achieving efficient (68)Ga radiopharmacy. J Labelled Comp Radiopharm. 2016;59:87–94.

    Article  CAS  PubMed  Google Scholar 

  33. Chakravarty R, Chakraborty S, Dash A. 64Cu2+ ions as PET probe: an emerging paradigm in molecular imaging of cancer. Mol Pharm. 2016;13:3601–12.

    Article  CAS  PubMed  Google Scholar 

  34. Bonnitcha PD, Vavere AL, Lewis JS, Dilworth JR. In vitro and in vivo evaluation of bifunctional bisthiosemicarbazone 64Cu-complexes for the positron emission tomography imaging of hypoxia. J Med Chem. 2008;51:2985–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vavere AL, Lewis JS. Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans. 2007;4:4893–902.

    Article  Google Scholar 

  36. Lopci E, Grassi I, Chiti A, Nanni C, Cicoria G, Toschi L, Fonti C, Lodi F, Mattioli S, Fanti. SPET. PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am J Nucl Med Mol Imaging. 2014;4:365–84.

    Google Scholar 

  37. Yang DJ, Azhdarinia A, Kim EE. Tumor specific imaging using Tc-99m and Ga-68 labeled radiopharmaceuticals. Curr Med Imaging Rev. 2005;1:25–34.

    Article  CAS  Google Scholar 

  38. Lazar I, Ramasamy R, Brucher E, Geraldes CFGC, Sherry AD. NMR and potentiometric studies of 1,4,7-triazacyclononane-N,N′,N″-tris(methylenephosphonate monoethylester) and its complexes with metal ions. Inorg Chim Acta. 1992;195:89–93.

    Article  CAS  Google Scholar 

  39. Sun Y, Anderson C, Pajeau T, Reichert D, Hancock R, Motekaitis R, Martell A, Welch M. Indium(III) and gallium(III) complexes of bis(aminoethanethiol) ligands with different denticities: stabilities, molecular modeling, and in vivo behavior. J Med Chem. 1996;39:458–70.

    Article  CAS  PubMed  Google Scholar 

  40. Berry DJ, Ma Y, Ballinger JR, Tavare R, Koers A, Sunassee K, Zhou T, Nawaz S, Mullen GED, Hider RC, Blower PJ. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands. Chem Commun. 2011;47:7068–70.

    Article  CAS  Google Scholar 

  41. Boros E, Ferreira CL, Cawthray JF, Price EW, Patrick PO, Wester DW, Adams MJ, Orvig C. Acyclic chelate with ideal properties for 68Ga PET imaging agent elaboration. J Am Chem Soc. 2010;132:15726–33.

    Article  CAS  PubMed  Google Scholar 

  42. Price EW, Cawthray JF, Bailey GA, Ferreira CL, Boros E, Adam MJ, Orvig C. H4octapa: an acyclic chelator for 111In radiopharmaceuticals. J Am Chem Soc. 2012;134:8670–83.

    Article  CAS  PubMed  Google Scholar 

  43. Chi YD, Katzenellenbogen JA. Selective formation of heterodimeric bis-bidentate aminothiol-oxometal complexes or rhenium(V). J Am Chem Soc. 1993;115:7045–6.

    Article  CAS  Google Scholar 

  44. Chi YD, O’Neil JP, Anderson CJ, Welch MJ, Katzenellenbogen JA. Homodimeric and heterodimeric bis(aminothiol) oxometal complexes with rhenium(V) and technetium(V). Control of heterodimeric complex formation and an approach to metal complexes that mimic steroid hormones. J Med Chem. 1994;37:928–37.

    Article  CAS  PubMed  Google Scholar 

  45. Rao TN, Adhikesavalu D, Camaraman A, Fritzberg AR. Technetium (V) and rhenium (V) complexes of 2,3-bis(mercaptoacetamido)propanoate. Chelate ring stereochemistry and influence on chemical and biological properties. J Am Chem Soc. 1990;112:5798–804.

    Article  CAS  Google Scholar 

  46. Castillo Gomez JD, Hagenbach A, Abram U. Propargyl-substituted thiocarbamoylbenzamidines of technetium and rhenium: steps towards bioconjugation with use of click chemistry. Eur J Inorg Chem. 2016;2016:5427–34.

    Article  CAS  Google Scholar 

  47. Nguyen HH, Pham CT, Abram U. Rhenium and technetium complexes with pentadentate thiocarbamoylbenzamidines: steps toward bioconjugation. Inorg Chem. 2014;54:5949–59.

    Article  Google Scholar 

  48. Liu S, Chakraborty S. 99mTc-centered one-pot synthesis for preparation of 99mTc radiotracers. Dalton Trans. 2011;40:6077–86.

    Article  CAS  PubMed  Google Scholar 

  49. Meszaros LK, Dose A, Biagini SCG, Blower PJ. Hydrazinonicotinic acid (HYNIC) - coordination chemistry and applications in radiopharmaceutical chemistry. Inorg Chim Acta. 2010;363:1059–69.

    Article  CAS  Google Scholar 

  50. Rennen H, van Eerd JE, Oyen WJG, Corstens FHM, Edwards DS, Boermann OC. Effects of coligand variation on the in vivo characteristics of Tc-99m-labeled interleukin-8 in detection of infection. Bioconjug Chem. 2002;13:370.

    Article  CAS  PubMed  Google Scholar 

  51. Alberto R, Schibli R, Egli A, Schubiger PA, Herrmann WA, Artus G, Abram U, Kaden TA. Metal carbonyl syntheses XXII. Low pressure carbonylation of [MOCl4] and [MO4]: the technetium(I) and rhenium(I) complexes [NEt4]2[MCl3(CO)3]. J Organomet Chem. 1995;493:119–27.

    Article  CAS  Google Scholar 

  52. Alberto R, Schibli R, Egli A, Schubiger PA. A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4] in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc. 1998;120:7987–8.

    Article  CAS  Google Scholar 

  53. Morais M, Paulo A, Gano L, Santos I, Correia JDG. Target-specific Tc(CO)3-complexes for in vivo imaging. J Organomet Chem. 2013;744:125–39.

    Article  CAS  Google Scholar 

  54. Oehlke E, Nguyen HH, Kahlke N, Deflon VM, Abram U. Tricarbonyltechnetium(I) and -rhenium(I) complexes with N'-thiocarbamoylpicolylbenzamidines. Polyhedron. 2012;40:153–8.

    Google Scholar 

  55. Braband H, Imstepf S, Benz M, Spingler B, Alberto R. Combining bifunctional chelator with (3 + 2)-cycloaddition approaches: synthesis of dual-function technetium complexes. Inorg Chem. 2012;51:4051–7.

    Article  CAS  PubMed  Google Scholar 

  56. Alberto R. The particular role of radiopharmacy within bioorganometallic chemistry. J Organomet Chem. 2007;692:1179–86.

    Article  CAS  Google Scholar 

  57. Alberto R. Radiopharmaceuticals. In: Jaouen G, editor. Bioorganometallics: biomolecules, labeling, medicine. Weinheim: Wiley; 2005.

    Google Scholar 

  58. Soler M, Feliu L, Planas M, Ribas X, Costas M. Peptide-mediated vectorization of metal complexes: conjugation strategies and biomedical applications. Dalton Trans. 2016;45:12970–82.

    Article  CAS  PubMed  Google Scholar 

  59. Liu Y, Spingler B, Schmutz P, Alberto R. Metal-mediated retro Diels−Alder of dicyclopentadiene derivatives: a convenient synthesis of [(Cp-R)M(CO)3] (M = 99mTc, Re) complexes. J Am Chem Soc. 2008;130(5):1554.

    Article  CAS  PubMed  Google Scholar 

  60. Wald J, Alberto R, Ortner K, Candreia L. One-pot synthesis of derivatized cyclopentadienyl–tricarbonyl complexes of 99mTc with an in situ CO source: application to a serotonergic receptor ligand. Angew Chem Int Ed Engl. 2001;40:3062–6.

    Article  CAS  PubMed  Google Scholar 

  61. N’Dongo HWP, Liu Y, Can D, Schmutz P, Spingler B, Alberto R. Aqueous syntheses of [(Cp-R)M(CO)3] type complexes (Cp = cyclopentadienyl, M = Mn, 99mTc, Re) with bioactive functionalities. J Organomet Chem. 2009;694:981–7.

    Article  Google Scholar 

  62. Sulieman S, Can D, Mertens J, N’Dongo HWP, Liu Y, Schmutz P, Bauwens M, Spingler B, Alberto R. Cyclopentadienyl-based amino acids (Cp-aa) as phenylalanine analogues for tumor targeting: syntheses and biological properties of [(Cp-aa)M(CO)3](M = Mn, re, 99mTc). Organometallics. 2012;31:6880–6.

    Article  CAS  Google Scholar 

  63. Ursilio S, Can D, N’Dongo HWP, Schmutz P, Spingler B, Alberto R. Cyclopentadienyl chemistry in water: synthesis and properties of bifunctionalized [(η5-C5H3{COOR}2)M(CO)3] (M = Re and 99mTc) complexes. Organometallics. 2014;33:6945–52.

    Article  Google Scholar 

  64. Spang P, Herrmann C, Rösch F. Bifunctional gallium-68 chelators: past, present, and future. Sem Nucl Med. 2016;46:373–94.

    Article  Google Scholar 

  65. Roosenburg S, Laverman P, Joosten L, Cooper MS, Kolenc-Peitl PK, Foster JM, Hudson C, Leyton J, Burnet J, Oyen WJG, Blower PJ, Mather SJ, Boerman OC, Sosabowski JK. PET and SPECT imaging of a radiolabeled minigastrin analogue conjugated with DOTA, NOTA, and NODAGA and labeled with 64Cu, 68Ga, and 111In. Mol Pharm. 2014;11:3930–7.

    Article  CAS  PubMed  Google Scholar 

  66. Simecek J, Zemek O, Hermann P, Notni J, Wester H-J. Tailored gallium(III) chelator NOPO: synthesis, characterization, bioconjugation, and application in preclinical Ga-68-PET imaging. Mol Pharm. 2014;11:3893–903.

    Article  CAS  PubMed  Google Scholar 

  67. Notni J, Pohle K, Wester H. Be spoilt for choice with radiolabelled RGD peptides: preclinical evaluation of 68Ga-TRAP(RGD)3. Nucl Med Biol. 2013;40:33–41.

    Article  CAS  PubMed  Google Scholar 

  68. Ma MT, Cullinane C, Imberti C, Torres JB, Terry SYA, Roselt P, Hicks RJ, Blower PJ. New tris(hydroxypyridinone) bifunctional chelators containing isothiocyanate groups provide a versatile platform for rapid one-step labeling and pet imaging with 68Ga3+. Bioconjug Chem. 2016;27:309–18.

    Article  CAS  PubMed  Google Scholar 

  69. Ma MT, Cullinane C, Waldeck K, Roselt P, Hicks RJ, Blower PJ. Rapid kit-based (68)Ga-labelling and PET imaging with THP-Tyr(3)-octreotate: a preliminary comparison with DOTA-Tyr(3)-octreotate. EJNMMI Res. 2015;5:52.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Heeg MJ, Jurisson SS. The role of inorganic chemistry in the development of radiometal agents for cancer therapy. Acc Chem Res. 1999;32:1053–60.

    Article  CAS  Google Scholar 

  71. Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS. Radiometals for combined imaging and therapy. Chem Rev. 2013;113:858–83.

    Article  CAS  PubMed  Google Scholar 

  72. Bhattachrayya S, Dixon M. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals. Dalton Trans. 2011;40:6112–28.

    Article  Google Scholar 

  73. Price EW, Orvig C. Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev. 2014;43:260–90.

    Article  CAS  PubMed  Google Scholar 

  74. Causey PW, Besanger TR, Schaffer P, Valliant JF. Expedient multi-step synthesis of organometallic complexes of Tc and re in high effective specific activity. A new platform for the production of molecular imaging and therapy agents. Inorg Chem. 2008;47:8213–21.

    Article  CAS  PubMed  Google Scholar 

  75. Schibli R, Schwarzbach R, Alberto R, Ortner K, Schmalle H, Dumas C, Egli A, Schubiger PA. Steps toward high specific activity labeling of biomolecules for therapeutic application: preparation of precursor [188Re(H2O)3(CO)3]+ and synthesis of tailor-made bifunctional ligand systems. Bioconjug Chem. 2002;13:750–6.

    Article  CAS  PubMed  Google Scholar 

  76. Park SH, Seifert S, Pietzsch H-J. Novel and efficient preparation of precursor [188Re(OH2)3(CO)3]+ for the labeling of biomolecules. Bioconjug Chem. 2006;17:223–5.

    Article  CAS  PubMed  Google Scholar 

  77. Morais GR, Paulo A, Santos I. Organometallic complexes for SPECT imaging and/or radionuclide therapy. Organometallics. 2012;31:5693–714.

    Article  CAS  Google Scholar 

  78. Jürgens S, Herrmann WA, Kühn FE. Rhenium and technetium based radiopharmaceuticals: Development and recent advances. J Organomet Chem. 2014;751:83–9.

    Article  Google Scholar 

  79. Nayak TK, Hathaway HJ, Ramesh C, Arterburn JB, Dai D, Sklar LA, Norenberg JP, Prossnitz ER. Influence of charge on cell permeability and tumor imaging of GPR30-targeted 111In-labeled non-steroidal imaging agents. J Nucl Med. 2008;49:978–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. He HY, Morely JE, Silca-Lopez E, Bottenus B, Montajano M, Fugate GA, Twamley B, Benny PD. Synthesis and characterization of nonsteroidal-linked M(CO)3 +(M = 99mTc, Re) compounds based on the androgen receptor targeting molecule flutamide. Bioconjug Chem. 2009;20:78–86.

    Google Scholar 

  81. Binkley SL, Ziegler CJ, Herrick RS, Rowlett RS. Specific derivatization of lysozyme in aqueous solution with Re(CO)3(H2O)3 +. Chem Commun. 2010;46:1203–5.

    Article  CAS  Google Scholar 

  82. Binkley SL, Leeper TC, Rowlett RS, Herrick RS, Ziegler CJ. Re(CO)3 (H2O)3 + binding to lysozyme: structure and reactivity. Metallomics. 2011;3:909–16.

    Article  CAS  PubMed  Google Scholar 

  83. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–67.

    Article  CAS  Google Scholar 

  84. Boros E, Lin Y-HS, Ferreira CL, Patrick BO, Häfli UO, Adam MJ, Orvig C. One to chelate them all: investigation of a versatile, bifunctional chelator for 64Cu, 99mTc, Re and Co. Dalton Trans. 2011;40:6253–9.

    Article  CAS  PubMed  Google Scholar 

  85. Bertrand B, Doulain P-E, Goze C, Bodio E. Development of trackable metal-based drugs: new generation of therapeutic agents. Dalton Trans. 2016;45:13005–11.

    Article  CAS  PubMed  Google Scholar 

  86. Natarajan A, Türkcan S, Gambhir SS, Pratx G. Multiscale framework for imaging radiolabeled therapeutics. Mol Pharm. 2015;12:4556–60.

    Article  Google Scholar 

  87. Lagisetty P, Vilekar P, Awashi V. Synthesis of radiolabeled cytarabine conjugates. Bioorg Med Chem Lett. 2009;19:4764–7.

    Article  CAS  PubMed  Google Scholar 

  88. Vineberg JG, Wang T, Zuniga ES, Ojima I. Design, synthesis, and biological evaluation of theranostic vitamin–linker–Taxoid conjugates. J Med Chem. 2015;58:2406–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Abram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Abram, U. (2018). Innovative PET and SPECT Tracers. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics