Skip to main content

Chlamydomonas: Intraflagellar Transport

  • Chapter
  • First Online:
Chlamydomonas: Biotechnology and Biomedicine

Part of the book series: Microbiology Monographs ((MICROMONO,volume 31))

  • 698 Accesses

Abstract

Cilia/flagella are microtubule-based organelles emanating from the surface of most eukaryotic cells and accomplish motile and sensory functions. Malfunction of cilia results in a variety of ciliopathies such as polycystic kidney disease, retinal degeneration, and male infertility. The assembly of nearly all cilia/flagella depends on a conserved transport machinery–intraflagellar transport (IFT), which has 22 subunits and is composed of IFT-A and IFT-B complex. IFT moves bidirectionally in flagella and is driven by the anterograde motor kinesin-2 and the retrograde motor dynein 1b/2. Co-expression and crystal structure analysis of IFT complex demonstrated that IFT-B can be divided into IFT-B1 and IFT-B2 subcomplex, and each subcomplex has a tubulin-binding module, suggesting that tubulin is a primary cargo of IFT. Other cargoes include axonemal components from outer dynein arms (ODA), inner dynein arms (IDA), radial spoke proteins (RSP) and dynein regulatory complexes (DRC), and membrane proteins. The IFT and cargoes form long trains and short trains in flagella under the electron microscopy. By transporting the flagellar precursors, turnover products, or signal molecules, IFT plays a critical role in flagellar assembly, disassembly, and signal transduction in Chlamydomonas. In addition to moving in flagella, IFT proteins also locate at the basal body and tip of flagella, where the regulation of IFT occurs. Future studies need to illustrate the interaction mechanism between the IFT and cargoes, relationship between IFT and the flagellar membrane trafficking, and the complexity and flexibility of the structure of IFT in vivo and to reconstitute the IFT machinery in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed NT, Gao C, Lucker BF, Cole DG, Mitchell DR (2008) ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. J Cell Biol 183(2):313–322. doi:10.1083/jcb.200802025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen RD, Allen NS, Travis JL (1981) Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil 1(3):291–302

    Article  CAS  PubMed  Google Scholar 

  • Badano JL, Mitsuma N, Beales PL, Katsanis N (2006) The ciliopathies: an emerging class of human genetic disorders. Annu Rev Genomics Hum Genet 7:125–148. doi:10.1146/annurev.genom.7.080505.115610

    Article  CAS  PubMed  Google Scholar 

  • Behal RH, Miller MS, Qin H, Lucker BF, Jones A, Cole DG (2012) Subunit interactions and organization of the Chlamydomonas reinhardtii intraflagellar transport complex a proteins. J Biol Chem 287(15):11689–11703. doi:10.1074/jbc.M111.287102

    Article  CAS  PubMed  Google Scholar 

  • Bhogaraju S, Taschner M, Morawetz M, Basquin C, Lorentzen E (2011) Crystal structure of the intraflagellar transport complex 25/27. EMBO J 30(10):1907–1918. doi:10.1038/emboj.2011.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhogaraju S, Cajanek L, Fort C, Blisnick T, Weber K, Taschner M, Mizuno N, Lamla S, Bastin P, Nigg EA, Lorentzen E (2013) Molecular basis of tubulin transport within the cilium by IFT74 and IFT81. Science 341(6149):1009–1012. doi:10.1126/science.1240985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloodgood RA (1992) Directed movements of ciliary and flagellar membrane components: a review. Biol Cell 76(3):291–301

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Cochran DA, Craige B, Kubo T, Witman GB (2015) Assembly of IFT trains at the ciliary base depends on IFT74. Curr Biol 25(12):1583–1593. doi:10.1016/j.cub.2015.04.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao M, Ning J, Hernandez-Lara CI, Belzile O, Wang Q, Dutcher SK, Liu Y, Snell WJ (2015) Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding. Elife 4. doi:10.7554/eLife.05242

  • Cole DG, Diener DR, Himelblau AL, Beech PL, Fuster JC, Rosenbaum JL (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J Cell Biol 141(4):993–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craft JM, Harris JA, Hyman S, Kner P, Lechtreck KF (2015) Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. J Cell Biol 208(2):223–237. doi:10.1083/jcb.201409036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deane JA, Cole DG, Seeley ES, Diener DR, Rosenbaum JL (2001) Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr Biol 11(20):1586–1590

    Article  CAS  PubMed  Google Scholar 

  • Dentler W (2005) Intraflagellar transport (IFT) during assembly and disassembly of Chlamydomonas flagella. J Cell Biol 170(4):649–659. doi:10.1083/jcb.200412021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutcher SK, Li L, Lin H, Meyer L, Giddings TH Jr, Kwan AL, Lewis BL (2012) Whole-genome sequencing to identify mutants and polymorphisms in Chlamydomonas reinhardtii. G3 (Bethesda) 2(1):15–22. doi:10.1534/g3.111.000919

    Article  CAS  Google Scholar 

  • Eguether T, San Agustin JT, Keady BT, Jonassen JA, Liang Y, Francis R, Tobita K, Johnson CA, Abdelhamed ZA, Lo CW, Pazour GJ (2014) IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Dev Cell 31(3):279–290. doi:10.1016/j.devcel.2014.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel BD, Ludington WB, Marshall WF (2009) Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J Cell Biol 187(1):81–89. doi:10.1083/jcb.200812084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel BD, Ishikawa H, Wemmer KA, Geimer S, K-i W, Hirono M, Craige B, Pazour GJ, Witman GB, Kamiya R, Marshall WF (2012) The role of retrograde intraflagellar transport in flagellar assembly, maintenance, and function. J Cell Biol 199(1):151–167. doi:10.1083/jcb.201206068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan ZC, Behal RH, Geimer S, Wang Z, Williamson SM, Zhang H, Cole DG, Qin H (2010) Chlamydomonas IFT70/CrDYF-1 is a core component of IFT particle complex B and is required for flagellar assembly. Mol Biol Cell 21(15):2696–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris PJ, Waffenschmidt S, Umen JG, Lin H, Lee JH, Ishida K, Kubo T, Lau J, Goodenough UW (2005) Plus and minus sexual agglutinins from Chlamydomonas reinhardtii. Plant Cell 17(2):597–615. doi:10.1105/tpc.104.028035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris JA, Liu Y, Yang P, Kner P, Lechtreck KF (2016) Single-particle imaging reveals intraflagellar transport-independent transport and accumulation of EB1 in Chlamydomonas flagella. Mol Biol Cell 27(2):295–307. doi:10.1091/mbc.E15-08-0608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Pazour GJ, Witman GB (2004) A dynein light intermediate chain, D1bLIC, is required for retrograde intraflagellar transport. Mol Biol Cell 15(10):4382–4394. doi:10.1091/mbc.E04-05-0377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Qin H, Follit JA, Pazour GJ, Rosenbaum JL, Witman GB (2007) Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella. J Cell Biol 176(5):653–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, Rifkin MR, Luck DJ (1977) Temperature-sensitive mutations affecting flagellar assembly and function in Chlamydomonas reinhardtii. J Cell Biol 72(1):67–85

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Diener DR, Mitchell A, Pazour GJ, Witman GB, Rosenbaum JL (2007) Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J Cell Biol 179(3):501–514. doi:10.1083/jcb.200704069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K, Diener DR, Rosenbaum JL (2009) The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. J Cell Biol 186(4):601–613. doi:10.1083/jcb.200903066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iomini C, Babaev-Khaimov V, Sassaroli M, Piperno G (2001) Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J Cell Biol 153(1):13–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iomini C, Li L, Esparza JM, Dutcher SK (2009) Retrograde intraflagellar transport mutants identify complex A proteins with multiple genetic interactions in Chlamydomonas reinhardtii. Genetics 183(3):885–896. doi:10.1534/genetics.109.101915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12(4):222–234. doi:10.1038/nrm3085

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa H, Ide T, Yagi T, Jiang X, Hirono M, Sasaki H, Yanagisawa H, Wemmer KA, Stainier DYR, Qin H, Kamiya R, Marshall WF (2014) TTC26/DYF13 is an intraflagellar transport protein required for transport of motility-related proteins into flagella. Elife 3. doi:10.7554/eLife.01566

  • Katoh Y, Terada M, Nishijima Y, Takei R, Nozaki S, Hamada H, Nakayama K (2016) Overall architecture of the intraflagellar transport (IFT)-B complex containing Cluap1/IFT38 as an essential component of the IFT-B peripheral subcomplex. J Biol Chem 291(21):10962–10975. doi:10.1074/jbc.M116.713883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc Natl Acad Sci U S A 90(12):5519–5523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozminski KG, Beech PL, Rosenbaum JL (1995) The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J Cell Biol 131(6 Pt 1):1517–1527

    Article  CAS  PubMed  Google Scholar 

  • Kubo T, Brown JM, Bellve K, Craige B, Craft JM, Fogarty K, Lechtreck KF, Witman GB (2016) Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin. J Cell Sci 129(10):2106–2119. doi:10.1242/jcs.187120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechtreck KF (2016) Methods for studying movement of molecules within cilia. In: Satir P, Christensen ST (eds) Cilia: methods and protocols. Springer, New York, pp 83–96. doi:10.1007/978-1-4939-3789-9_6

    Chapter  Google Scholar 

  • Lechtreck K-F, Johnson EC, Sakai T, Cochran D, Ballif BA, Rush J, Pazour GJ, Ikebe M, Witman GB (2009a) The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J Cell Biol 187(7):1117–1132. doi:10.1083/jcb.200909183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechtreck KF, Luro S, Awata J, Witman GB (2009b) HA-tagging of putative flagellar proteins in Chlamydomonas reinhardtii identifies a novel protein of intraflagellar transport complex B. Cell Motil Cytoskeleton 66(8):469–482. doi:10.1002/cm.20369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechtreck KF, Brown JM, Sampaio JL, Craft JM, Shevchenko A, Evans JE, Witman GB (2013) Cycling of the signaling protein phospholipase D through cilia requires the BBSome only for the export phase. J Cell Biol 201(2):249–261. doi:10.1083/jcb.201207139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L’Hernault SW, Rosenbaum JL (1983) Chlamydomonas alpha-tubulin is posttranslationally modified in the flagella during flagellar assembly. J Cell Biol 97(1):258–263

    Article  PubMed  Google Scholar 

  • L’Hernault SW, Rosenbaum JL (1985) Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry 24(2):473–478

    Article  PubMed  Google Scholar 

  • Li J, Sun Z (2011) Qilin is essential for cilia assembly and normal kidney development in zebrafish. PLoS One 6(11):e27365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Pang Y, Wu Q, Hu Z, Han X, Xu Y, Deng H, Pan J (2014) FLA8/KIF3B phosphorylation regulates kinesin-II interaction with IFT-B to control IFT entry and turnaround. Dev Cell 30(5):585–597. doi:10.1016/j.devcel.2014.07.019

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Nauman NP, Albee AJ, Hsu S, Dutcher SK (2013) New mutations in flagellar motors identified by whole genome sequencing in Chlamydomonas. Cilia 2(1):14. doi:10.1186/2046-2530-2-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Long H, Zhang F, Xu N, Liu G, Diener DR, Rosenbaum JL, Huang K (2016) Comparative analysis of ciliary membranes and ectosomes. Curr Biol 26:3327–3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucker BF, Behal RH, Qin H, Siron LC, Taggart WD, Rosenbaum JL, Cole DG (2005) Characterization of the intraflagellar transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits. J Biol Chem 280(30):27688–27696

    Article  CAS  PubMed  Google Scholar 

  • Lucker BF, Miller MS, Dziedzic SA, Blackmarr PT, Cole DG (2010) Direct interactions of intraflagellar transport complex B proteins IFT88, IFT52, and IFT46. J Biol Chem 285(28):21508–21518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malicki J, Avanesov A, Li J, Yuan S, Sun Z (2011) Analysis of cilia structure and function in zebrafish. Methods Cell Biol 101:39–74. doi:10.1016/B978-0-12-387036-0.00003-7

    Article  PubMed  Google Scholar 

  • Marshall WF, Rosenbaum JL (2001) Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol 155(3):405–414. doi:10.1083/jcb.200106141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura K, Lefebvre PA, Kamiya R, Hirono M (2002) Kinesin-II is not essential for mitosis and cell growth in Chlamydomonas. Cell Motil Cytoskeleton 52(4):195–201. doi:10.1002/cm.10051

    Article  CAS  PubMed  Google Scholar 

  • Miller MS, Esparza JM, Lippa AM, Lux FG 3rd, Cole DG, Dutcher SK (2005) Mutant kinesin-2 motor subunits increase chromosome loss. Mol Biol Cell 16(8):3810–3820. doi:10.1091/mbc. E05-05-0404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller J, Perrone CA, Bower R, Cole DG, Porter ME (2005) The FLA3 KAP subunit is required for localization of kinesin-2 to the site of flagellar assembly and processive anterograde intraflagellar transport. Mol Biol Cell 16(3):1341–1354. doi:10.1091/mbc.E04-10-0931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orozco JT, Wedaman KP, Signor D, Brown H, Rose L, Scholey JM (1999) Movement of motor and cargo along cilia. Nature 398(6729):674

    Article  CAS  PubMed  Google Scholar 

  • Ou G, Blacque OE, Snow JJ, Leroux MR, Scholey JM (2005) Functional coordination of intraflagellar transport motors. Nature 436(7050):583–587. doi:10.1038/nature03818

    Article  CAS  PubMed  Google Scholar 

  • Pan JM, Snell WJ (2000) Regulated targeting of a protein kinase into an intact flagellum – an aurora/Ipl1p-like protein kinase translocates from the cell body into the flagella during gamete activation in Chlamydomonas. J Biol Chem 275(31):24106–24114. doi:10.1074/jbc.M002686200

    Article  CAS  PubMed  Google Scholar 

  • Pan JM, Snell WJ (2005) Chlamydomonas shortens its flagella by activating axonemal disassembly, stimulating IFT particle trafficking, and blocking anterograde cargo loading. Dev Cell 9(3):431–438. doi:10.1016/j.devcel.2005.07.010

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Wang Q, Snell WJ (2004) An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev Cell 6(3):445–451

    Article  CAS  PubMed  Google Scholar 

  • Pan JM, Wang Q, Snell WJ (2005) Cilium-generated signaling and cilia-related disorders. Lab Investig 85(4):452–463. doi:10.1038/labinvest.3700253

    Article  CAS  PubMed  Google Scholar 

  • Patel-King RS, Gilberti RM, Hom EF, King SM (2013) WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia. Mol Biol Cell 24(17):2668–2677. doi:10.1091/mbc.E13-05-0266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazour GJ, Wilkerson CG, Witman GB (1998) A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J Cell Biol 141(4):979–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazour GJ, Dickert BL, Witman GB (1999) The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol 144(3):473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151(3):709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170(1):103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen LB, Geimer S, Sloboda RD, Rosenbaum JL (2003) The microtubule plus end-tracking protein EB1 is localized to the flagellar tip and basal bodies in Chlamydomonas reinhardtii. Curr Biol 13(22):1969–1974

    Article  CAS  PubMed  Google Scholar 

  • Pedersen LB, Miller MS, Geimer S, Leitch JM, Rosenbaum JL, Cole DG (2005) Chlamydomonas IFT172 is encoded by FLA11, interacts with CrEB1, and regulates IFT at the flagellar tip. Curr Biol 15(3):262–266. doi:10.1016/j.cub.2005.01.037

    Article  CAS  PubMed  Google Scholar 

  • Pedersen LB, Gelmer S, Rosenbaum JL (2006) Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas. Curr Biol 16(5):450–459. doi:10.1016/j.cub.2006.02.020

    Article  CAS  PubMed  Google Scholar 

  • Perrone CA, Tritschler D, Taulman P, Bower R, Yoder BK, Porter ME (2003) A novel dynein light intermediate chain colocalizes with the retrograde motor for intraflagellar transport at sites of axoneme assembly in chlamydomonas and mammalian cells. Mol Biol Cell 14(5):2041–2056. doi:10.1091/mbc.E02-10-0682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pigino G, Geimer S, Lanzavecchia S, Paccagnini E, Cantele F, Diener DR, Rosenbaum JL, Lupetti P (2009) Electron-tomographic analysis of intraflagellar transport particle trains in situ. J Cell Biol 187(1):135–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piperno G, Luck DJ (1979) Axonemal adenosine triphosphatases from flagella of Chlamydomonas reinhardtii. Purification of two dyneins. J Biol Chem 254(8):3084–3090

    CAS  PubMed  Google Scholar 

  • Piperno G, Mead K (1997) Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci U S A 94(9):4457–4462. doi:10.1073/pnas.94.9.4457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piperno G, Mead K, Henderson S (1996) Inner dynein arms but not outer dynein arms require the activity of kinesin homologue protein KHp1(FLA10) to reach the distal part of flagella in Chlamydomonas. J Cell Biol 133(2):371–379. doi:10.1083/jcb.133.2.371

    Article  CAS  PubMed  Google Scholar 

  • Piperno G, Siuda E, Henderson S, Segil M, Vaananen H, Sassaroli M (1998) Distinct mutants of retrograde intraflagellar transport (IFT) share similar morphological and molecular defects. J Cell Biol 143(6):1591–1601. doi:10.1083/jcb.143.6.1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter ME, Bower R, Knott JA, Byrd P, Dentler W (1999) Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell 10(3):693–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin HM, Diener DR, Geimer S, Cole DG, Rosenbaum JL (2004) Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body. J Cell Biol 164(2):255–266. doi:10.1083/jcb.200308132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H, Wang Z, Diener D, Rosenbaum J (2007) Intraflagellar transport protein 27 is a small G protein involved in cell-cycle control. Curr Biol 17(3):193–202. doi:10.1016/j.cub.2006.12.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reck J, Schauer AM, VanderWaal Mills K, Bower R, Tritschler D, Perrone CA, Porter ME (2016) The role of the dynein light intermediate chain in retrograde IFT and flagellar function in Chlamydomonas. Mol Biol Cell. doi:10.1091/mbc.E16-03-0191

  • Richey EA, Qin H (2012) Dissecting the sequential assembly and localization of intraflagellar transport particle complex B in Chlamydomonas. PLoS One 7(8):e43118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringo DL (1967) Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol 33(3):543–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rompolas P, Pedersen LB, Patel-King RS, King SM (2007) Chlamydomonas FAP133 is a dynein intermediate chain associated with the retrograde intraflagellar transport motor. J Cell Sci 120(Pt 20):3653–3665. doi:10.1242/jcs.012773

    Article  CAS  PubMed  Google Scholar 

  • Sanchez GM, Alkhori L, Hatano E, Schultz SW, Kuzhandaivel A, Jafari S, Granseth B, Alenius M (2016) Hedgehog signaling regulates the ciliary transport of odorant receptors in drosophila. Cell Rep 14(3):464–470. doi:10.1016/j.celrep.2015.12.059

    Article  CAS  PubMed  Google Scholar 

  • Satish Tammana TV, Tammana D, Diener DR, Rosenbaum J (2013) Centrosomal protein CEP104 (Chlamydomonas FAP256) moves to the ciliary tip during ciliary assembly. J Cell Sci 126(Pt 21):5018–5029. doi:10.1242/jcs.133439

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidts M, Hou Y, Cortes CR, Mans DA, Huber C, Boldt K, Patel M, van Reeuwijk J, Plaza JM, van Beersum SE, Yap ZM, Letteboer SJ, Taylor SP, Herridge W, Johnson CA, Scambler PJ, Ueffing M, Kayserili H, Krakow D, King SM, Beales PL, Al-Gazali L, Wicking C, Cormier-Daire V, Roepman R, Mitchison HM, Witman GB (2015) TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport. Nat Commun 6:7074. doi:10.1038/ncomms8074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih SM, Engel BD, Kocabas F, Bilyard T, Gennerich A, Marshall WF, Yildiz A (2013) Intraflagellar transport drives flagellar surface motility. Elife 2:e00744. doi:10.7554/eLife.00744

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva DA, Huang X, Behal RH, Cole DG, Qin H (2012) The RABL5 homolog IFT22 regulates the cellular pool size and the amount of IFT particles partitioned to the flagellar compartment in Chlamydomonas reinhardtii. Cytoskeleton 69(1):33–48. doi:10.1002/cm.20546

    Article  CAS  PubMed  Google Scholar 

  • Sloboda RD, Howard L (2009) Protein methylation in full length Chlamydomonas flagella. Cell Motil Cytoskeleton 66(8):650–660. doi:10.1002/cm.20387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanek L, Pigino G (2016) Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352(6286):721–724. doi:10.1126/science.aaf4594

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N (2004) A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131(16):4085–4093. doi:10.1242/dev.01240

    Article  CAS  PubMed  Google Scholar 

  • Swiderski RE, Nakano Y, Mullins RF, Seo S, Banfi B (2014) A mutation in the mouse ttc26 gene leads to impaired hedgehog signaling. PLoS Genet 10(10):e1004689. doi:10.1371/journal.pgen.1004689

    Article  PubMed  PubMed Central  Google Scholar 

  • Taschner M, Lorentzen E (2016) The intraflagellar transport machinery. Cold Spring Harb Perspect Biol 8(10). doi:10.1101/cshperspect.a028092

  • Taschner M, Bhogaraju S, Vetter M, Morawetz M, Lorentzen E (2011) Biochemical mapping of interactions within the intraflagellar transport (IFT) B core complex: IFT52 binds directly to four other IFT-B subunits. J Biol Chem 286(30):26344–26352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taschner M, Kotsis F, Braeuer P, Kuehn EW, Lorentzen E (2014) Crystal structures of IFT70/52 and IFT52/46 provide insight into intraflagellar transport B core complex assembly. J Cell Biol 207(2):269–282. doi:10.1083/jcb.201408002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taschner M, Weber K, Mourao A, Vetter M, Awasthi M, Stiegler M, Bhogaraju S, Lorentzen E (2016) Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. EMBO J 35(7):773–790. doi:10.15252/embj.201593164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toriyama M, Lee C, Taylor SP, Duran I, Cohn DH, Bruel AL, Tabler JM, Drew K, Kelly MR, Kim S, Park TJ, Braun DA, Pierquin G, Biver A, Wagner K, Malfroot A, Panigrahi I, Franco B, Al-Lami HA, Yeung Y, Choi YJ, Duffourd Y, Faivre L, Riviere JB, Chen J, Liu KJ, Marcotte EM, Hildebrandt F, Thauvin-Robinet C, Krakow D, Jackson PK, Wallingford JB (2016) The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat Genet 48(6):648–656. doi:10.1038/ng.3558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannuccini E, Paccagnini E, Cantele F, Gentile M, Dini D, Fino F, Diener D, Mencarelli C, Lupetti P (2016) Two classes of short intraflagellar transport train with different 3D structures are present in Chlamydomonas flagella. J Cell Sci 129(10):2064–2074. doi:10.1242/jcs.183244

    Article  CAS  PubMed  Google Scholar 

  • Vashishtha M, Walther Z, Hall JL (1996) The kinesin-homologous protein encoded by the Chlamydomonas FLA10 gene is associated with basal bodies and centrioles. J Cell Sci 109:541–549

    CAS  PubMed  Google Scholar 

  • Vieillard J, Duteyrat JL, Cortier E, Durand B (2015) Imaging cilia in Drosophila melanogaster. Methods Cell Biol 127:279–302. doi:10.1016/bs.mcb.2014.12.009

    Article  PubMed  Google Scholar 

  • Wang Q, Snell WJ (2003) Flagellar adhesion between mating type plus and mating type minus gametes activates a flagellar protein-tyrosine kinase during fertilization in Chlamydomonas. J Biol Chem 278(35):32936–32942. doi:10.1074/jbc.M303261200

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Pan J, Snell WJ (2006) Intraflagellar transport particles participate directly in cilium-generated signaling in Chlamydomonas. Cell 125(3):549–562. doi:10.1016/j.cell.2006.02.044

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Fan ZC, Williamson SM, Qin H (2009) Intraflagellar transport (IFT) protein IFT25 is a phosphoprotein component of IFT complex B and physically interacts with IFT27 in Chlamydomonas. PLoS One 4(5):e5384. doi:10.1371/journal.pone.0005384

    Article  PubMed  PubMed Central  Google Scholar 

  • Wren KN, Craft JM, Tritschler D, Schauer A, Patel DK, Smith EF, Porter ME, Kner P, Lechtreck KF (2013) A differential cargo-loading model of ciliary length regulation by IFT. Curr Biol 23(24):2463–2471. doi:10.1016/j.cub.2013.10.044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (31371354 to Dr. Kaiyao Huang and 31400654 to Dr. Gai Liu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyao Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, G., Huang, K. (2017). Chlamydomonas: Intraflagellar Transport. In: Hippler, M. (eds) Chlamydomonas: Biotechnology and Biomedicine. Microbiology Monographs, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-66360-9_5

Download citation

Publish with us

Policies and ethics