Skip to main content

A Stochastic Molecular Scheme for an Artificial Cell to Infer Its Environment from Partial Observations

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10467))

Included in the following conference series:

Abstract

The notion of entropy is shared between statistics and thermodynamics, and is fundamental to both disciplines. This makes statistical problems particularly suitable for reaction network implementations. In this paper we show how to perform a statistical operation known as Information Projection or E projection with stochastic mass-action kinetics. Our scheme encodes desired conditional distributions as the equilibrium distributions of reaction systems. To our knowledge this is a first scheme to exploit the inherent stochasticity of reaction networks for information processing. We apply this to the problem of an artificial cell trying to infer its environment from partial observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72(8), 1947–1970 (2010)

    Google Scholar 

  2. Buisman, H.J., ten Eikelder, H.M.M., Hilbers, P.A.J., Liekens, A.M.L., Liekens, A.M.L.: Computing algebraic functions with biochemical reaction networks. Artif. Life 15(1), 5–19 (2009)

    Google Scholar 

  3. Cardelli, L., Kwiatkowska, M.Z., Laurenti, L.: Programming discrete distributions with chemical reaction networks. CoRR, abs/1601.02578 (2016)

    Google Scholar 

  4. Cencov, N.N.: Statistical Decision Rules and Optimal Inference. Translations of Mathematical Monographs. American Mathematical Society, New York (2000)

    Google Scholar 

  5. Craciun, G., Toric differential inclusions, a proof of the global attractor conjecture. arXiv preprint arXiv:1501.02860 (2015)

  6. Csiszár, I., Shields, P.C., et al.: Information theory and statistics: a tutorial. Found. Trends® Commun. Inf. Theor. 1(4), 417–528 (2004)

    Google Scholar 

  7. Daniel, R., Rubens, J.R., Sarpeshkar, R., Lu, T.K.: Synthetic analog computation in living cells. Nature 497(7451), 619–623 (2013)

    Google Scholar 

  8. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability, vol. 38. Springer, Heidelberg (2010)

    Google Scholar 

  9. Dupuis, P., Ellis, R.S.: A Weak Convergence Approach to the Theory of Large Deviations, vol. 902. Wiley, New York (2011)

    Google Scholar 

  10. Feinberg, M.: On chemical kinetics of a certain class. Arch. Rational Mech. Anal. 46, 1–41 (1972)

    Google Scholar 

  11. Feinberg, M.: Lectures on chemical reaction networks (1979). http://www.che.eng.ohio-state.edu/FEINBERG/LecturesOnReactionNetworks/

  12. Gopalkrishnan, M.: Catalysis in reaction networks. Bull. Math. Biol. 73(12), 2962–2982 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gopalkrishnan, M.: A scheme for molecular computation of maximum likelihood estimators for log-linear models. In: Rondelez, Y., Woods, D. (eds.) DNA 2016. LNCS, vol. 9818, pp. 3–18. Springer, Cham (2016). doi:10.1007/978-3-319-43994-5_1

    Chapter  Google Scholar 

  14. Horn, F.J.M.: Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Rational Mech. Anal. 49(3), 172–186 (1972)

    Google Scholar 

  15. Amari, S.: Information Geometry and its Applications, 7th edn. Springer, Osaka (2016)

    Google Scholar 

  16. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957)

    Google Scholar 

  17. Kullback, S.: Information Theory and Statistics. Courier Corporation, New York (1997)

    Google Scholar 

  18. Miller, E.: Theory and applications of lattice point methods for binomial ideals. In: Combinatorial Aspects of Commutative Algebra and Algebraic Geometry, pp. 99–154. Springer, Heidelberg (2011)

    Google Scholar 

  19. Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction networks. In: Advances in Neural Information Processing Systems, pp. 2247–2255 (2013)

    Google Scholar 

  20. Oishi, K., Klavins, E.: Biomolecular implementation of linear I/O systems. Syst. Biol. IET 5(4), 252–260 (2011)

    Article  Google Scholar 

  21. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface 8(62), 1281–1297 (2011)

    Google Scholar 

  22. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  23. Whittle, P.: Systems in Stochastic Equilibrium. Wiley, New York (1986)

    Google Scholar 

  24. Zwicker, D., Murugan, A., Brenner, M.P.: Receptor arrays optimized for natural odor statistics. In: Proceedings of the National Academy of Sciences, p. 201600357 (2016)

    Google Scholar 

Download references

Acknowledgements

Work of Abhishek Behera was supported in part by Bharti Centre for Communication in IIT Bombay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Gopalkrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Virinchi, M.V., Behera, A., Gopalkrishnan, M. (2017). A Stochastic Molecular Scheme for an Artificial Cell to Infer Its Environment from Partial Observations. In: Brijder, R., Qian, L. (eds) DNA Computing and Molecular Programming. DNA 2017. Lecture Notes in Computer Science(), vol 10467. Springer, Cham. https://doi.org/10.1007/978-3-319-66799-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66799-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66798-0

  • Online ISBN: 978-3-319-66799-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics