Skip to main content

Non-clausal Connection Calculi for Non-classical Logics

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10501))

Abstract

The paper introduces non-clausal connection calculi for first-order intuitionistic and several first-order modal logics. The notion of a non-clausal matrix together with the non-clausal connection calculus for classical logic are extended to intuitionistic and modal logics by adding prefixes that encode the Kripke semantics of these logics. Details of the required prefix unification and some optimization techniques are described. Furthermore, compact Prolog implementations of the introduced non-classical calculi are presented. An experimental evaluation shows that non-clausal connection calculi are a solid basis for proof search in these logics, in terms of time complexity and proof size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A relation \(R \subseteq W \times W\) is serial iff for all \(w_1\in W\) there is some \(w_2\in W\) with \((w_1,w_2)\in R\).

  2. 2.

    \(\hbox {pre}(x)\) for a variable x is the prefix \(\hbox {pre}(Q x G)\) of the corresponding subformula QxG, \(Q{\in }\{\forall ,\exists \}\).

  3. 3.

    \(u \preceq w\) holds iff u is an initial substring of w or \(u \,{=}\, w\). This condition, as well as the fact that there is no accessibility condition for S5, are slightly corrected conditions of [23].

  4. 4.

    The original characterization [23] uses a “tableau-like” definition and not non-clausal matrices.

  5. 5.

    This is also called the monoid problem; it is the equation theory in which there is a neutral element \(\varepsilon \) and the associativity of the string concatenation operator \(\circ \) holds.

References

  1. Beckert, B., Posegga, J.: leanTAP: lean tableau-based deduction. J. Autom. Reason. 15(3), 339–358 (1995)

    Article  MATH  Google Scholar 

  2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development Coq’Art: The Calculus of Inductive Constructions. EATCS Series. Springer, Heidelberg (2004). doi:10.1007/978-3-662-07964-5

    Book  MATH  Google Scholar 

  3. Bibel, W.: Automated Theorem Proving Artificial Intelligence, 2nd edn. F. Vieweg und Sohn, Wiesbaden (1987). doi:10.1007/978-3-322-90102-6

    Book  MATH  Google Scholar 

  4. Constable, R.L., et al.: Implementing Mathematics with the NuPRL Proof Development System. Prentice-Hall, Englewood Cliffs (1986)

    Google Scholar 

  5. Freitas, F., Otten, J.: A connection calculus for the description logic \( {\cal{ALC}} \). In: Khoury, R., Drummond, C. (eds.) AI 2016. LNCS, vol. 9673, pp. 243–256. Springer, Cham (2016). doi:10.1007/978-3-319-34111-8_30

    Google Scholar 

  6. Gentzen, G.: Untersuchungen über das Logische Schließen. Mathematische Zeitschrift 39(176–210), 405–431 (1935)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kreitz, C., Otten, J.: Connection-based theorem proving in classical and non-classical logics. J. Univ. Comput. Sci. 5(3), 88–112 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Letz, R., Stenz, G.: Model elimination and connection tableau procedures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 2015–2112. Elsevier Science, Amsterdam (2001)

    Chapter  Google Scholar 

  9. Otten, J.: ileanTAP: an intuitionistic theorem prover. In: Galmiche, D. (ed.) TABLEAUX 1997. LNCS, vol. 1227, pp. 307–312. Springer, Heidelberg (1997). doi:10.1007/BFb0027422

    Chapter  Google Scholar 

  10. Otten, J.: Clausal connection-based theorem proving in intuitionistic first-order logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 245–261. Springer, Heidelberg (2005). doi:10.1007/11554554_19

    Chapter  Google Scholar 

  11. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving in classical and intuitionistic logic (system descriptions). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 283–291. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7_23

    Chapter  Google Scholar 

  12. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2–3), 159–182 (2010)

    MATH  MathSciNet  Google Scholar 

  13. Otten, J.: A non-clausal connection calculus. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 226–241. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22119-4_18

    Chapter  Google Scholar 

  14. Otten, J.: MleanCoP: a connection prover for first-order modal logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 269–276. Springer, Cham (2014). doi:10.1007/978-3-319-08587-6_20

    Google Scholar 

  15. Otten, J.: nanoCoP: a non-clausal connection prover. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 302–312. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1_21

    Google Scholar 

  16. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb. Comput. 36(1–2), 139–161 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Otten, J., Bibel, W.: Advances in connection-based automated theorem proving. In: Hinchey, M.G., Bowen, J.P., Olderog, E.-R. (eds.) Provably Correct Systems. NMSSE, pp. 211–241. Springer, Cham (2017). doi:10.1007/978-3-319-48628-4_9

    Chapter  Google Scholar 

  18. Raths, T., Otten, J.: The QMLTP problem library for first-order modal logics. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 454–461. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3_35

    Chapter  Google Scholar 

  19. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic. J. Autom. Reason. 38, 261–271 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sahlin, D., Franzen, T., Haridi, S.: An intuitionistic predicate logic theorem prover. J. Logic Comput. 2(5), 619–656 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schmitt, S., Lorigo, L., Kreitz, C., Nogin, A.: JProver: integrating connection-based theorem proving into interactive proof assistants. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 421–426. Springer, Heidelberg (2001). doi:10.1007/3-540-45744-5_34

    Chapter  Google Scholar 

  22. Waaler, A.: Connections in nonclassical logics. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1487–1578. Elsevier Science, Amsterdam (2001)

    Chapter  Google Scholar 

  23. Wallen, L.A.: Automated Deduction in Non-Classical Logics. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Arild Waaler for his support through the Sirius Center at the University of Oslo funded by the Research Council of Norway. Furthermore, he would like to thank Wolfgang Bibel for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Otten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Otten, J. (2017). Non-clausal Connection Calculi for Non-classical Logics. In: Schmidt, R., Nalon, C. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2017. Lecture Notes in Computer Science(), vol 10501. Springer, Cham. https://doi.org/10.1007/978-3-319-66902-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66902-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66901-4

  • Online ISBN: 978-3-319-66902-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics