Skip to main content

Social Networks and Spatial Distribution

  • Chapter
  • First Online:
Simulating Social Complexity

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In most agent-based social simulation models, the issue of the organisation of the agents’ population matters. The topology, in which agents interact, be it spatially structured or a social network, can have important impacts on the obtained results in social simulation. Unfortunately, the necessary data about the target system is often lacking; therefore, you have to use models in order to reproduce realistic spatial distributions of the population and/or realistic social networks among the agents. In this chapter, we identify the main issues concerning this point and describe several models of social networks or of spatial distribution that can be integrated in agent-based simulation to go a step forwards from the use of a purely random model. In each case, we identify several output measures that allow quantifying their impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The diameter of a graph is defined as the length of the longest-shortest path in the graph.

  2. 2.

    Short path being defined by Watts and Strogatz as comparable to those found in random graphs of the same size and average degree.

  3. 3.

    The preferential attachment mechanism has appeared in several different fields under different names. In information science, it is known as cumulative advantage (de Solla Price 1976), in sociology as the Matthew effect (Merton 1968) and in economics as the Gibrat principle (Simon 1955).

References

  • Albert, R., & Barabási, A.-L. (2000). Topology of evolving networks: Local events and universality. Physical Review Letters, 85, 5234–5237.

    Article  Google Scholar 

  • Albert, R., Jeong, H., & Barabási, A.-L. (1999). Diameter of the world-wide web. Nature, 401, 130–131.

    Article  Google Scholar 

  • Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406, 379–381.

    Article  Google Scholar 

  • Ball, F., Mollisson, D., & Scalia-Tomba, G. (1997). Epidemics with two levels of mixing. Annals of Applied Probability, 7, 46–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.

    Article  MathSciNet  MATH  Google Scholar 

  • Bender, E. A., & Canfield, E. R. (1978). The asymptotic number of labeled graphs with given degree sequences. Journal of Combinatorial Theory, Series A, 24, 296–307.

    Article  MathSciNet  MATH  Google Scholar 

  • Besag, J. (1977). Contribution to the discussion of Dr. Ripley’s paper. Journal of the Royal Statistical Society: Series B, 39, 193–195.

    MathSciNet  Google Scholar 

  • Bianconi, G., & Barabási, A.-L. (2001). Competition and multiscaling in evolving networks. Europhysics Letters, 90, 436–442.

    Article  Google Scholar 

  • Bollobas, B. (2001). Random graphs (2nd ed.). New York: Academic.

    Book  MATH  Google Scholar 

  • Bonacich, P., & Lloyd, P. (2001). Eigenvector-like measures of centrality for asymmetric relations. Social Networks, 23(3), 191–201.

    Article  Google Scholar 

  • Broder, A., et al. (2000). Graph structure in the web. Computer Networks, 33, 309–320.

    Article  Google Scholar 

  • Callaway, D. S., Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2000). Network robustness and fragility: Percolation on random graphs. Physical Review Letters, 85, 5468–5471.

    Article  Google Scholar 

  • Casteigts, A., Flocchini, P., Quattrociocchi, W., & Santoro, N. (2010). Time-varying graphs and dynamic networks. arXiv:1012.0009v3.

    Google Scholar 

  • Chessel, D. (1978). Description non paramétrique de la dispersion spatiale des individus d’une espèce. In J. M. Legay & R. Tomassone (Eds.), Biométrie et écologie (pp. 45–133). Paris: Société Française de Biométrie.

    Google Scholar 

  • Chopard, B., & Droz, M. (1998). Cellular automata modeling of physical systems. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Clark, P. J., & Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4), 445–453.

    Article  Google Scholar 

  • Cohen, R., Erez, K., Ben-Avraham, D., & Havlin, S. (2000). Resilience of the Internet to random breakdowns. Physical Review Letters, 85, 4626–4628.

    Article  Google Scholar 

  • Costa, L. D. (2004). Reinforcing the resilience of complex networks. Physical Review E, 69, 066127.

    Article  Google Scholar 

  • Cressie, N. A. C. (1993). Statistics for spatial data. New York: Wiley.

    MATH  Google Scholar 

  • de Solla Price, D. J. (1965). Networks of scientific papers. Science, 149, 510–515.

    Article  Google Scholar 

  • de Solla Price, D. J. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27, 292–306.

    Article  Google Scholar 

  • Deffuant, G. (2006). Comparing extremism propagation patterns in continuous opinion models. Journal of Artificial Societies and Social Simulation, 9(3). http://jasss.soc.surrey.ac.uk/9/3/8.html

  • Diggle, P. J. (1983). Statistical Analysis of Spatial Point Patterns. New York: Academic.

    MATH  Google Scholar 

  • Dorogovtsev, S. N., Mendes, J. F. F., & Samukhin, A. N. (2000). Structure of growing networks with preferential linking. Physical Review Letters, 85, 4633–4636.

    Article  Google Scholar 

  • Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematics Institute of Hungarian Academy of Science, 5, 17–61.

    MathSciNet  MATH  Google Scholar 

  • Faloutsos, M., Faloutsos, O., & Faloutsos, C. (1999). On power-law relationships of the internet topology. Computer Communications Review, 29, 251–262.

    Article  MATH  Google Scholar 

  • Flache, A., & Hegselmann, R. (2001). Do irregular grids make a difference? Relaxing the spatial regularity assumption in cellular models of social dynamics. Journal of Artificial Societies and Social Simulation, 4(4). http://www.soc.surrey.ac.uk/JASSS/4/4/6.html

  • Freeman, L. C. (1979). Centrality in social networks: Conceptual clarification. Social Networks, 1, 215–239.

    Article  Google Scholar 

  • Füldner, K. (1995). Strukturbeschreibung von Buchen-Edellaubholz-Mischwäldern. Göttingen: Cuvillier Verlag.

    Google Scholar 

  • Getis, A., & Franklin, J. (1987). Second order neighborhood analysis of mapped point patterns. Ecology, 68(3), 473–477.

    Article  Google Scholar 

  • Gong, X., & Xiao, R. (2007). Research on multi-agent simulation of epidemic news spread characteristics. Journal of Artificial Societies and Social Simulation, 10(3). http://jasss.soc.surrey.ac.uk/10/3/1.html

  • Goreaud, F. (2000). Apports de l’analyse de la structure spatiale en forêt tempérée à l’étude et la modélisation des peuplements complexes. Diploma thesis, ENGREF (École nationale du génie rural des eaux et forêts), Nancy, France.

    Google Scholar 

  • Goulard, M., Pages, L., & Cabanettes, A. (1995). Marked point process: Using correlation functions to explore a spatial data set. Biometrical Journal, 37(7), 837–853.

    Article  MATH  Google Scholar 

  • Granovetter, M. (1978). Threshold models of collective behaviour. American Journal of Sociology, 83(6), 1420–1443.

    Article  Google Scholar 

  • Holland, P. W., & Leinhardt, S. (1981). An exponential family of probability distributions for directed graphs. Journal of the American Statistical Association, 76, 33–65.

    Article  MathSciNet  MATH  Google Scholar 

  • Holme, P., & Grönlund, A. (2005). Modelling the dynamics of youth subcultures. Journal of Artificial Societies and Social Simulation, 8(3). http://jasss.soc.surrey.ac.uk/8/3/3.html

  • Huet, S., Edwards, M., & Deffuant, G. (2007). Taking into account the variations of neighbourhood sizes in the mean-field approximation of the threshold model on a random network. Journal of Artificial Societies and Social Simulation, 10(1). http://jasss.soc.surrey.ac.uk/10/1/10.html

  • IMAGES. (2004). Improving agri-environmental policies: A simulation approach to the role of the cognitive properties of farmers and institutions (Final report of the FAIR3 CT 2092 - IMAGES project). http://wwwlisc.clermont.cemagref.fr/ImagesProject/FinalReport/final%20report%20V2last.pdf.

  • Jager, W., & Amblard, F. (2005). Uniformity, bipolarisation and pluriformity captured as generic stylised behaviour with an agent-based simulation model of attitude change. Computational and Mathematical Organization Theory, 10, 295–303.

    Article  Google Scholar 

  • Jeong, H., et al. (2002). Evolution of the social network of scientific collaborations. Physica A, 311, 590–614.

    Article  MathSciNet  MATH  Google Scholar 

  • Katz, L. (1953). A new status derived from sociometric analysis. Psychometrika, 18, 39–43.

    Article  MATH  Google Scholar 

  • Keeling, M. J. (1999). The effects of local spatial structure on epidemiological invasion. Proceedings of the Royal Society B: Biological Sciences, 266, 859–867.

    Article  Google Scholar 

  • Kiêu, K., & Mora, M. (1999). Estimating the reduced moments of a random measure. Advances in Applied Probability, 31(1), 48–62.

    Article  MathSciNet  MATH  Google Scholar 

  • Kossinets, G., Kleinberg, J., & Watts, D. (2008). The structure of information pathways in a social communication network. In Y. Li, B. Liu, & S. Sarawagi (Eds.), Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’08) (pp. 435–443). New York: ACM.

    Google Scholar 

  • Kottonau, J., & Pahl-Wostl, C. (2004). Simulating political attitudes and voting behaviour. Journal of Artificial Societies and Social Simulation, 7(4). http://jasss.soc.surrey.ac.uk/7/4/6.html

  • Krapivsky, P. L., Redner, S., & Leyvraz, F. (2000). Connectivity of growing random networks. Physical Review Letters, 85, 4629–4632.

    Article  Google Scholar 

  • Luczak, T. (1992). Sparse random graphs with a given degree sequence. In A. M. Frieze & T. Luczak (Eds.), Proceedings of the Symposium on Random Graphs, Poznan 1989 (pp. 165–182). New York: Wiley.

    Google Scholar 

  • Lusseau, D. (2003). The emergent properties of a dolphin social network. Proceedings of the Royal Society B: Biological Sciences, 270(2), S186–S188.

    Article  Google Scholar 

  • Merton, R. K. (1968). The Matthew effect in science. Science, 159, 56–63.

    Article  Google Scholar 

  • Meyer, M., Lorscheid, I., & Troitzsch, K. (2009). The development of social simulation as reflected in the first ten years of JASSS: A citation and co-citation analysis. Journal of Artificial Societies and Social Simulation, 12(4). http://jasss.soc.surrey.ac.uk/12/4/12.html

  • Molloy, M., & Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures & Algorithms, 6, 161–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 404–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Newman, M. E. J. (2003a). Ego-centered networks and the ripple effect. Social Networks, 25, 83–95.

    Article  Google Scholar 

  • Newman, M. E. J. (2003b). Properties of highly clustered networks. Physical Review E, 68, 016128.

    Google Scholar 

  • Newman, M. E. J. (2004). Co-authorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America, 101, 5200–5205.

    Article  Google Scholar 

  • Newman, M. E. J., & Watts, D. J. (1999). Scaling and percolation in the small-world network model. Physical Review E, 60, 7332–7342.

    Article  Google Scholar 

  • Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Physical Review E, 64, 026118.

    Article  Google Scholar 

  • Newman, M. E. J., Barabási, A.-L., & Watts, D. J. (2006). The structure and dynamics of networks. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Page, L., Brin, S., Motwani, R., & Winograd T. (1999). The PageRank citation ranking: Bringing order to the web (Technical Report, 1999–66. Stanford InfoLab, Stanford University). http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

  • Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic spreading in scale-free networks. Physical Review Letters, 86, 3200–3203.

    Article  Google Scholar 

  • Pretzsch, H. (1993). Analyse und Reproduktion räumlicher Bestandesstrukturen: Versuche mit dem Strukturgenerator STRUGEN (Schriften aus der forstlichen Fakultät der Universität Göttingen und der N.F.V., 114). Universität Göttingen.

    Google Scholar 

  • Pujol, J. M., Flache, A., Delgado, J., & Sanguesa, R. (2005). How can social networks ever become complex? Modelling the emergence of complex networks from local social exchanges. Journal of Artificial Societies and Social Simulation, 8(4). http://jasss.soc.surrey.ac.uk/8/4/12.html

  • Rapoport, A. (1957). Contribution to the theory of random and biased nets. Bulletin of Mathematical Biophysics, 19, 257–277.

    Article  MathSciNet  Google Scholar 

  • Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, 21(4), 25–34.

    Article  Google Scholar 

  • Ripley, B. D. (1976). The second order analysis of stationary point process. Journal of Applied Probability, 13, 255–266.

    Article  MathSciNet  MATH  Google Scholar 

  • Ripley, B. D. (1977). Modelling spatial patterns. Journal of the Royal Statistical Society. Series B, 39, 172–212.

    MathSciNet  Google Scholar 

  • Ripley, B. D. (1981). Spatial statistics. New York: Wiley.

    Book  MATH  Google Scholar 

  • Rozenfeld, H. D., & Ben-Avraham, D. (2004). Designer nets from local strategies. Physical Review E, 70, 056107.

    Article  Google Scholar 

  • Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A., & Amblard, F. (2011). Time-varying graphs and social network analysis: Temporal indicators and metrics. In Proceedings of SNAMAS 2011 (pp. 33–38).

    Google Scholar 

  • Schelling, T. (1971). Dynamic Models of Segregation. Journal of Mathematical Sociology, 1(1), 143–186.

    Article  MATH  Google Scholar 

  • Simon, H. A. (1955). On a class of skew distribution functions. Biometrika, 42, 425–440.

    Article  MathSciNet  MATH  Google Scholar 

  • Solomonoff, R., & Rapoport, A. (1951). Connectivity of random nets. Bulletin of Mathematical Biophysics, 13, 107–117.

    Article  MathSciNet  Google Scholar 

  • Stocker, R., Green, D. G., & Newth, D. (2001). Consensus and cohesion in simulated social networks. Journal of Artificial Societies and Social Simulation, 4(4). http://jasss.soc.surrey.ac.uk/4/4/5.html

  • Stocker, R., Cornforth, D., & Bossomaier, T. R. J. (2002). Network structures and agreement in social network simulations. Journal of Artificial Societies and Social Simulation, 5(4). http://jasss.soc.surrey.ac.uk/5/4/3.html

  • Stoyan, D. (1987). Statistical analysis of spatial point process: A soft-core model and cross correlations of marks. Biometrical Journal, 29, 971–980.

    Article  MATH  Google Scholar 

  • Stoyan, D., Kendall, W. S., & Mecke, J. (1995). Stochastic geometry and its applications. New York: Wiley.

    MATH  Google Scholar 

  • Tanizawa, T., Paul, G., Cohen, R., Havlin, S., & Stanley, H. E. (2005). Optimization of network robustness to waves of targeted and random attacks. Physical Review E, 71, 047101.

    Article  Google Scholar 

  • Thiriot, S., & Kant, J-D (2008). Generate country-scale networks of interaction from scattered statistics. In F. Squazzioni (Ed.), Proceedings of the 5th Conference of the European Social Simulation Association, ESSA ‘08, Brescia, Italy.

    Google Scholar 

  • Tomppo, E. (1986). Models and methods for analysing spatial patterns of trees, Communicationes Instituti Forestalis Fenniae (Vol. 138). Helsinki: The Finnish Forest Research Institute.

    Google Scholar 

  • Walsh, T. (1999). Search in a small world. In T. Dean (Ed.), Proceedings of the 16th International Joint Conference on Artificial Intelligence, IJCAI ’99 (pp. 1172–1177). San Francisco: Morgan Kauffman.

    Google Scholar 

  • Watts, D. J. (1999). Small worlds: The dynamics of networks between order and randomness. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Watts, D. J. (2002). A simple model of global cascades on random networks. Proceedings of the National Academy of Sciences of the United States of America, 99, 5766–5771.

    Article  MathSciNet  MATH  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small world networks. Nature, 393, 440–442.

    Article  MATH  Google Scholar 

  • Wolfram, S. (1986). Theory and applications of cellular automata. Singapore: World Scientific.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Amblard .

Editor information

Editors and Affiliations

Further Reading

Further Reading

The literature on dynamic aspects of social networks is rapidly developing. For social network models and their analysis, we currently recommend Newman et al. (2006). For spatial aspects, we recommend Diggle (1983). For more details concerning random graphs models, we refer the interested reader to Bollobas (2001).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amblard, F., Quattrociocchi, W. (2017). Social Networks and Spatial Distribution. In: Edmonds, B., Meyer, R. (eds) Simulating Social Complexity. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-66948-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66948-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66947-2

  • Online ISBN: 978-3-319-66948-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics