Skip to main content

Theoretical Aspects of Materials Physics

  • Chapter
  • First Online:
Future Solar Energy Devices

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The properties of solids materials, especially the electrons dynamics are determined by the characteristics of the crystalline lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Fuchs, The conductivity of thin metallic films according to the electron theory of metals. Math. Proc. Cambridge Philos. Soc. 34(1), 100–108 (1938)

    Article  Google Scholar 

  2. E.H. Sondheimer, The mean free path of electrons in metals. Adv. In Phys. 1, 1–42 (1952)

    Article  MATH  Google Scholar 

  3. J.R. Schrieffer, Effective carrier mobility in surface-space charge layers. Phys. Rev. 97, 641 (1955)

    Article  Google Scholar 

  4. R.L. Petriz, Theory of photoconductivity in semiconductor films. Phys. Rev. 104(6), 1508–1515 (1956)

    Article  Google Scholar 

  5. J.C. Anderson, Conduction in thin semiconductor films. Adv. Phys. 19, 311 (1970)

    Article  Google Scholar 

  6. P.S. Kireev, Semiconductors physics, 2nd edn. (Mir Publishers, 1978)

    Google Scholar 

  7. I. Spînulescu, Fizica straturilor subţiri şi aplicaţiile acestora, Ed. Ştiinţifică, Bucureşti, 1975

    Google Scholar 

  8. R.A. Smith, Semiconductors, (Cambridge, Univ. Press, 1980)

    Google Scholar 

  9. Harald Ibach, Hans Lüth, Solid State Physics (Springer Verlag, Berlin Heidelberg, 1991)

    Book  MATH  Google Scholar 

  10. C. Hamann, H. Burghard, T. Frauenheim, Electrical Conduction Mechanisms in Solids (VEB Deuthscher Verlag der Wissenschaften, Berlin, 1988)

    Google Scholar 

  11. K. Seeger, Semiconductor Physics (Springer-Verlag, Berlin-Heidelberg-New York, 1982)

    Book  MATH  Google Scholar 

  12. L.L. Kazmerski, Polycrystalline and Amorphous Thin Films and devices (Academic press, New York, 1980)

    Google Scholar 

  13. I. Licea, Fizica metalelor, Ed. Ştiinţifică şi Enciclopedică, Bucureşti, 1986

    Google Scholar 

  14. F.F. Ham, D.C. Mattis, Electrical properties of thin-film semiconductors. IBM J. Res. Dev. 4, 143–151 (1960)

    Article  MATH  Google Scholar 

  15. A. Many, Y. Golstein, N.B. Grover, Semiconductor Surfaces, (North Holland Publ., Amsterdam, 1965)

    Google Scholar 

  16. C. Juhaz, J.C. Anderson, Field-effect studies on indium antimonide films. Radio Electron Eng 33(4), 223 (1967)

    Article  Google Scholar 

  17. J. Volger, Note on the hall potential across an inhomogeneous conductor. Phys. Rev. 79, 1023 (1950)

    Article  Google Scholar 

  18. Y.W. Seto John, The electrical properties of polycrystalline silicon films. J. App. Phys. 46(12) 5247 (1975)

    Google Scholar 

  19. R.G. Mankarious, Hall mobility measurements on CdS films. Solid State Electron. 7, 702–704 (1964)

    Article  Google Scholar 

  20. S. Datta, M.J. McLennan, Quantum transport in ultrasmall electronic devices. Rep. Prog. Phys. 53(8), 1003–1135 (1990)

    Article  Google Scholar 

  21. B.H. Brandsen, C.J. Joachain, Introduction to Quantum Mechanics, (Longman Scientific & Technical, 1994)

    Google Scholar 

  22. A.J. Heeger, Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. 40, 2591–2611 (2001)

    Article  Google Scholar 

  23. J. Joo, S.M. Long, J.P. Pouget, E.J. Oh, A.G. MacDiarmid, A.J. Epstein, Charge transport of the mesoscopic metallic state in partially crystalline polyanilines. Phys. Rev. B 57(16), 9567 (1998)

    Article  Google Scholar 

  24. S. Antohe, Materials and Organic Electronics Devices, (Ed. Univ. Bucharest, 1996)

    Google Scholar 

  25. A. Aleshin, R. Kiebooms, R. Menon, A.J. Heeger, Electronic transport in doped poly (3,4-ethylenedioxythiophene) near the metal-insulator transition. Synth. Met. 90, 61–68 (1997)

    Article  Google Scholar 

  26. Oliver Benson, Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480, 193–199 (2011)

    Article  Google Scholar 

  27. R.H. Bube, Electronic Properties of Crystalline Solids (Academic Press, London, 1972)

    Google Scholar 

  28. T.S. Moss, G.Z. Burrell, B. Ellis, Semiconductor Optoelectronics (Butter Worts, New York, 1973)

    Google Scholar 

  29. N.F. Mott, E.A. Davis, Electron Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  30. D.L. Greenaway, G. Harbeke, Optical Properties and Band Structure of Semiconductors, (Pergamon Press, Oxford, 1968)

    Google Scholar 

  31. J.I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971)

    Google Scholar 

  32. H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films (Institute of Publishing, Bristol and Philadelphia, 1995)

    Google Scholar 

  33. I. Hamberg, C.G. Granqvist, Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. J. Appl. Phys. 60(11), R123 (1986)

    Article  Google Scholar 

  34. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632 (1954)

    Article  Google Scholar 

  35. N.F. Mott, Conduction in non-crystalline materials. Phil. Mag. 19, 835–852 (1969)

    Article  Google Scholar 

  36. M.S. Dresselhaus, Solid State Physics Part II Optical Properties of Solids, vol 6, 2001

    Google Scholar 

  37. Hamidreza Chalabi, Mark L. Brongersma, Harvest season for hot electrons. Nat. Nanotechnol. 8, 229–230 (2013)

    Article  Google Scholar 

  38. W. Brüting, Physics of Organic Semiconductors, (Wiley VCH, 2005)

    Google Scholar 

  39. E. Yablonovitch, Photonic Crystals: Semiconductors of Light, (Scientific American, Inc., 2001), pp. 47–55

    Google Scholar 

  40. A. Dorota, Pawlak, metamaterials and photonic crystals—potential applications for self-organized eutectic micro- and nanostructures. Sci. Plena 4, 014801 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Girtan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Girtan, M. (2018). Theoretical Aspects of Materials Physics. In: Future Solar Energy Devices. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-67337-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67337-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67336-3

  • Online ISBN: 978-3-319-67337-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics