Skip to main content

Fault Tolerant Direct NAT Structure Extraction from Pairwise Causal Interaction Patterns

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10564))

Included in the following conference series:

  • 551 Accesses

Abstract

Non-impeding noisy-And Trees (NATs) provide a general, expressive, and efficient causal model for conditional probability tables (CPTs) in discrete Bayesian networks (BNs). A CPT may be directly expressed as a NAT model or compressed into a NAT model. Once CPTs are NAT-modeled, efficiency of BN inference (both space and time) can be significantly improved. The most important operation in NAT modeling CPTs is extracting NAT structures from interaction patterns between causes. Early method does so through a search tree coupled with a NAT database. A recent advance allows extraction of NAT structures from full, valid causal interaction patterns based on bipartition of causes, without requiring the search tree and the NAT database. In this work, we extend the method to direct NAT structure extraction from partial and invalid causal interaction patterns. This contribution enables direct NAT extraction from all conceivable application scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific independence in Bayesian networks. In: Proceeding of 12th Conference on Uncertainty in Artificial Intelligence, pp. 115–123 (1996)

    Google Scholar 

  2. Darwiche, A.: A differential approach to inference in Bayesian networks. J. ACM 50(3), 280–305 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diez, F.J.: Parameter adjustment in Bayes networks: the generalized noisy OR-gate. In: Heckerman, D., Mamdani, A. (eds.) Proceeding of 9th Conference on Uncertainty in Artificial Intelligence, pp. 99–105. Morgan Kaufmann (1993)

    Google Scholar 

  4. Henrion, M.: Some practical issues in constructing belief networks. In: Kanal, L.N., Levitt, T.S., Lemmer, J.F. (eds.) Uncertainty in Artificial Intelligence 3, pp. 161–173. Elsevier Science Publishers (1989)

    Google Scholar 

  5. Lemmer, J.F., Gossink, D.E.: Recursive noisy OR - a rule for estimating complex probabilistic interactions. IEEE Trans. Syst. Man Cybern. Part B 34(6), 2252–2261 (2004)

    Article  Google Scholar 

  6. Maaskant, P.P., Druzdzel, M.J.: An independence of causal interactions model for opposing influences. In: Jaeger, M., Nielsen, T.D. (eds.) Proceeding 4th European Workshop on Probabilistic Graphical Models, pp. 185–192. Hirtshals, Denmark (2008)

    Google Scholar 

  7. Poon, H., Domingos, P.: Sum-product networks: a new deep architecture. In: Proceeding of 12th Conference on Uncertainty in Artificial Intelligence, pp. 2551–2558 (2011)

    Google Scholar 

  8. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  9. Vomlel, J., Tichavský, P.: An approximate tensor-based inference method applied to the game of minesweeper. In: van der Gaag, L.C., Feelders, A.J. (eds.) PGM 2014. LNCS, vol. 8754, pp. 535–550. Springer, Cham (2014). doi:10.1007/978-3-319-11433-0_35

    Google Scholar 

  10. Woudenberg, S., van der Gaag, L.C., Rademaker, C.: An intercausal cancellation model for Bayesian-network engineering. Inter. J. Approximate Reasoning 63, 3247 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xiang, Y.: Acquisition and computation issues with NIN-AND tree models. In: Myllymaki, P., Roos, T., Jaakkola, T. (eds.) Proceeding of 5th European Workshop on Probabilistic Graphical Models, Finland, pp. 281–289 (2010)

    Google Scholar 

  12. Xiang, Y.: Non-impeding noisy-AND tree causal models over multi-valued variables. Int. J. Approximate Reasoning 53(7), 988–1002 (2012). Oct

    Article  MathSciNet  MATH  Google Scholar 

  13. Xiang, Y.: Extraction of NAT causal structures based on bipartition. In: Proceeding of 30th International Florida Artificial Intelligence Research Society Conference (2017, in press)

    Google Scholar 

  14. Xiang, Y., Jia, N.: Modeling causal reinforcement and undermining with Noisy-AND trees. In: Lamontagne, L., Marchand, M. (eds.) AI 2006. LNCS, vol. 4013, pp. 171–182. Springer, Heidelberg (2006). doi:10.1007/11766247_15

    Chapter  Google Scholar 

  15. Xiang, Y., Jiang, Q.: Compression of general Bayesian Net CPTs. In: Khoury, R., Drummond, C. (eds.) AI 2016. LNCS, vol. 9673, pp. 285–297. Springer, Cham (2016). doi:10.1007/978-3-319-34111-8_35

    Google Scholar 

  16. Xiang, Y., Jin, Y.: Multiplicative factorization of multi-valued NIN-AND tree models. In: Markov, Z., Russell, I. (eds.) Proceeding of 29th International Florida Artificial Intelligence Research Society Conference, pp. 680–685. AAAI Press (2016)

    Google Scholar 

  17. Xiang, Y., Liu, Q.: Compression of Bayesian networks with NIN-AND tree modeling. In: van der Gaag, L.C., Feelders, A.J. (eds.) PGM 2014. LNCS, vol. 8754, pp. 551–566. Springer, Cham (2014). doi:10.1007/978-3-319-11433-0_36

    Google Scholar 

  18. Xiang, Y., Li, Y., Zhu, Z.J.: Towards effective elicitation of NIN-AND tree causal models. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 282–296. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04388-8_22

    Chapter  Google Scholar 

  19. Xiang, Y., Truong, M.: Acquisition of causal models for local distributions in Bayesian networks. IEEE Trans. Cybern. 44(9), 1591–1604 (2014)

    Article  Google Scholar 

  20. Xiang, Y., Zhu, Z.J., Li, Y.: Enumerating unlabeled and root labeled trees for causal model acquisition. In: Gao, Y., Japkowicz, N. (eds.) AI 2009. LNCS, vol. 5549, pp. 158–170. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01818-3_17

    Chapter  Google Scholar 

  21. Zhao, H., Melibari, M., Poupart, P.: On the relationship between sum-product networks and Bayesian networks. In: Proceeding of 32nd International Conference Machine Learning (2015)

    Google Scholar 

Download references

Acknowledgement

Financial support from the NSERC Discovery Grant is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xiang, Y. (2017). Fault Tolerant Direct NAT Structure Extraction from Pairwise Causal Interaction Patterns. In: Moral, S., Pivert, O., Sánchez, D., Marín, N. (eds) Scalable Uncertainty Management. SUM 2017. Lecture Notes in Computer Science(), vol 10564. Springer, Cham. https://doi.org/10.1007/978-3-319-67582-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67582-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67581-7

  • Online ISBN: 978-3-319-67582-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics