Skip to main content

Classifying Cognitive Workload Using Eye Activity and EEG Features in Arithmetic Tasks

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2017)

Abstract

The paper presents the results of classification of mental states in a study of the cognitive workload based on arithmetic tasks. Different classification methods were applied using features extracted from eye activity and EEG signal. The paper discusses results of two datasets. The first one covers binary classification discriminating between the cognitive workload condition and the no-task control condition. The second one discriminates between three mental states: the high cognitive workload condition, the low cognitive workload condition and the no-task control condition. The results obtained for the first dataset reached the accuracy of 90% with 6 eye-tracking features as input and an SVMs classifier. The second dataset was classified with the maximum accuracy of 73% due to its complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gevins, A., Smith, M.E., McEvoy, L., Yu, D.: High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb. Cortex 7, 374–385 (1997). doi:10.1093/cercor/7.4.374

    Article  Google Scholar 

  2. Kruger, J., Doherty, S.: Measuring cognitive load in the presence of educational video: towards a multimodal methodology. Australas. J. Educ. Technol. 32, 19–31 (2016). doi:10.14742/ajet.3084

    Article  Google Scholar 

  3. O’Donnell, R.D., Eggemeier, F.T.: Workload assessment methodology. In: Handbook of Perception and Human Performance. Cognitive Processes and Performance, vol. 2. Wiley (1986)

    Google Scholar 

  4. Tsang, P.S., Vidulich, M.A.: Mental workload and situation awareness. In: Handbook of Human Factors and Ergonomics, 3rd edn., pp. 243–268. Wiley Online Library (2006)

    Google Scholar 

  5. Matthews, G., Reinerman-Jones, L.E., Barber, D.J., Abich IV, J.: The psychometrics of mental workload: multiple measures are sensitive but divergent. Hum. Factors 57, 125–143 (2015)

    Article  Google Scholar 

  6. Marshall, S.P.: The index of cognitive activity: measuring cognitive workload. In: Proceedings of IEEE 7th Conference on Human Factors and Power Plants, pp. 5–9 (2002). doi:10.1109/HFPP.2002.1042860

  7. Chen, S., Epps, J., Ruiz, N., Chen, F.: Eye activity as a measure of human mental effort in HCI. In: Proceedings of the 16th International Conference on Intelligent User Interfaces, pp. 315–318. ACM, New York (2011)

    Google Scholar 

  8. Kiefer, P., Giannopoulos, I., Duchowski, A., Raubal, M.: Measuring cognitive load for map tasks through pupil diameter. In: Miller, J.A., O’Sullivan, D., Wiegand, N. (eds.) GIScience 2016. LNCS, vol. 9927, pp. 323–337. Springer, Cham (2016). doi:10.1007/978-3-319-45738-3_21

    Chapter  Google Scholar 

  9. Savage, S.W., Potter, D.D., Tatler, B.W.: Does preoccupation impair hazard perception? A simultaneous EEG and eye tracking study. Transp. Res. Part F Traffic Psychol. Behav. 17, 52–62 (2013)

    Article  Google Scholar 

  10. Kruger, J.-L., Hefer, E., Matthew, G.: Measuring the impact of subtitles on cognitive load: eye tracking and dynamic audiovisual texts. In: Proceedings of Eye Tracking South Africa, pp. 6–11 (2013)

    Google Scholar 

  11. Ren, P., Barreto, A., Huang, J., Gao, Y., Ortega, F.R., Adjouadi, M.: Off-line and on-line stress detection through processing of the pupil diameter signal. Ann. Biomed. Eng. 42, 162–176 (2014). doi:10.1007/s10439-013-0880-9

    Article  Google Scholar 

  12. Ryu, K., Myung, R.: Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic. Int. J. Ind. Ergon. 35, 991–1009 (2005). doi:10.1016/j.ergon.2005.04.005

    Article  Google Scholar 

  13. Chen, S., Epps, J.: Automatic classification of eye activity for cognitive load measurement with emotion interference. Comput. Methods Programs Biomed. 110, 111–124 (2013). doi:10.1016/j.cmpb.2012.10.021

    Article  Google Scholar 

  14. Ren, P., Barreto, A., Gao, Y., Adjouadi, M., Member, S.S., Barreto, A., Member, S.S.: Affective assessment by digital processing of the pupil diameter. IEEE Trans. Affect. Comput. 4, 2–14 (2013). doi:10.1109/T-AFFC.2012.25

    Article  Google Scholar 

  15. Nourbakhsh, N., Wang, Y., Chen, F.: GSR and blink features for cognitive load classification. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8117, pp. 159–166. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40483-2_11

    Chapter  Google Scholar 

  16. Haapalainen, E., Kim, S., Forlizzi, J.F., Dey, A.K.: Psycho-physiological measures for assessing cognitive load. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 301–310. ACM, New York (2010)

    Google Scholar 

  17. Halverson, T., Estepp, J., Christensen, J., Monnin, J.: Classifying workload with eye movements in a complex task. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 56, 168–172 (2012)

    Article  Google Scholar 

  18. Rozado, D., Duenser, A.: Combining EEG with pupillometry to improve cognitive workload detection. Computer (Long. Beach. Calif) 48, 18–25 (2016). doi:10.1109/MC.2015.314

    Google Scholar 

  19. Lobo, J.L., Del Ser, J., Moravek, Z., De Simone, F., Presta, R., Collina, S.: Cognitive workload classification using eye-tracking and EEG data. In: Proceedings of the International Conference on Human-Computer Interaction in Aerospace, pp. 16:1–16:8. ACM, New York (2016)

    Google Scholar 

  20. Zarjam, P., Epps, J., Lovell, N.H.: Beyond subjective self-rating: EEG signal classification of cognitive workload (2015)

    Google Scholar 

  21. Skublewska-Paszkowska, M., Łukasik, E., Smołka, J., Miłosz, M., Plechawska-Wójcik, M., Borys, M., Dzieńkowski, M.: Comprehensive measurements of human motion parameters in research projects. In: Candel Torres, I., Gomez Chova, L., Lopez Martinez, A. (eds.) INTED2016 Proceedings, pp. 8597–8605. IATED Academy (2016)

    Google Scholar 

  22. Jolliffe, I.: Principal component analysis. Wiley Online Library (2002)

    Google Scholar 

  23. Kumar, N., Kumar, J.: Measurement of cognitive load in HCI systems using EEG power spectrum: an experimental study. Procedia - Procedia Comput. Sci. 84, 70–78 (2016). doi:10.1016/j.procs.2016.04.068

    Article  Google Scholar 

  24. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press, New York (1984)

    MATH  Google Scholar 

  25. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188 (1936)

    Article  Google Scholar 

  26. Krzanowski, W.J.: Principles of Multivariate Analysis: A User’s Perspective. Clarendon, Oxford (1988)

    MATH  Google Scholar 

  27. Friedman, J., Hastie, T., Tibshirani, R., et al.: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 28, 337–407 (2000)

    Article  MATH  Google Scholar 

  28. Christianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  29. Mitchell, T.M., et al.: Machine learning (1997)

    Google Scholar 

  30. Mason, L., Baxter, J., Bartlett, P.L., Frean, M.R.: Boosting algorithms as gradient descent. In: NIPS, pp. 512–518 (1999)

    Google Scholar 

  31. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MATH  Google Scholar 

  32. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Borys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Borys, M., Plechawska-Wójcik, M., Wawrzyk, M., Wesołowska, K. (2017). Classifying Cognitive Workload Using Eye Activity and EEG Features in Arithmetic Tasks. In: Damaševičius, R., Mikašytė, V. (eds) Information and Software Technologies. ICIST 2017. Communications in Computer and Information Science, vol 756. Springer, Cham. https://doi.org/10.1007/978-3-319-67642-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67642-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67641-8

  • Online ISBN: 978-3-319-67642-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics