Skip to main content

Surface Modification of Radionanomedicine

  • Chapter
  • First Online:
Radionanomedicine

Abstract

Various radioactive nanomaterials (radionanomaterials) have been successfully utilized as radionanomedicines, particularly in the field of nuclear imaging and radiation therapy. Surface modification is one of the most critical steps during the fabrication of radionanomedicines. Proper surface modification can bring multiple benefits to radioisotopes-loaded nanomaterials, which include, but not limited to, material disparity/stability improvement, in vivo pharmacokinetics optimization, adjustment of interactions with biomolecules, incorporation of diagnostic or tissue targeting moieties, addition of new material property (e.g. stimuli responsiveness), among many others. In this chapter, we tried to give a brief illustration on how various surface modification strategies can be accomplished for specific nanomaterials, and provide comments on the advantages and limitations of each strategy. By the most straightforward categorization, the surface modification can be achieved via either chemical reactions (covalent coupling) or physical interactions (usually forming noncovalent binding). Each surface modification method can work synergistically with each other to generate theranostic radionanomaterials with more attractive characteristics. In the end, different previous representative research reports were given as examples to confirm how these strategies could be used in surface modification of nanomaterials from different categories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Hajiw, J. Schmitt, M. Imperor-Clerc, B. Pansu, Solvent-driven interactions between hydrophobically-coated nanoparticles. Soft Matter 11(19), 3920–3926 (2015)

    Article  ADS  Google Scholar 

  2. M. Muthiah, I.K. Park, C.S. Cho, Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol. Adv. 31(8), 1224–1236 (2013)

    Article  Google Scholar 

  3. A.A. D’Souza, R. Shegokar, Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 13(9), 1257–1275 (2016)

    Article  Google Scholar 

  4. Y. Chen, Y. Xianyu, X. Jiang, Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res. 50(2), 310–319 (2017)

    Article  Google Scholar 

  5. X.S. Zheng, P. Hu, Y. Cui, C. Zong, J.M. Feng, X. Wang et al., BSA-coated nanoparticles for improved SERS-based intracellular pH sensing. Anal. Chem. 86(24), 12250–12257 (2014)

    Article  Google Scholar 

  6. L. Liu, X. Li, L. Chen, X. Zhang, Nanoscale functional biomaterials for cancer theranostics. Curr. Med. Chem. (2017) (Epub)

    Google Scholar 

  7. A.M. Dias, A. Hussain, A.S. Marcos, A.C. Roque, A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol. Adv. 29(1), 142–155 (2011)

    Article  Google Scholar 

  8. S. Shi, F. Chen, W. Cai, Biomedical applications of functionalized hollow mesoporous silica nanoparticles: focusing on molecular imaging. Nanomedicine 8(12), 2027–2039 (2013)

    Article  Google Scholar 

  9. S.B. Lee, S.W. Lee, S.Y. Jeong, G. Yoon, S.J. Cho, S.K. Kim et al., Engineering of radioiodine-labeled gold core-shell nanoparticles as efficient nuclear medicine imaging agents for trafficking of dendritic cells. ACS Appl. Mater. Interfaces 9(10), 8480–8489 (2017)

    Article  Google Scholar 

  10. N. Feliu, D. Docter, M. Heine, P. Del Pino, S. Ashraf, J. Kolosnjaj-Tabi et al., In vivo degeneration and the fate of inorganic nanoparticles. Chem. Soc. Rev. 45(9), 2440–2457 (2016)

    Article  Google Scholar 

  11. T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson et al., Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Nat. Acad. Sci. U S A 104(7), 2050–2055 (2007)

    Article  ADS  Google Scholar 

  12. M. Neagu, Z. Piperigkou, K. Karamanou, A.B. Engin, A.O. Docea, C. Constantin et al., Protein bio-corona: critical issue in immune nanotoxicology. Arch. Toxicol. 91(3), 1031–1048 (2017)

    Article  Google Scholar 

  13. P. Rivera-Gil, D. Jimenez de Aberasturi, V. Wulf, B. Pelaz, P. del Pino, Y. Zhao et al., The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc. Chem. Res. 46(3), 743–749 (2013)

    Article  Google Scholar 

  14. S. Salatin, S. Maleki Dizaj, A. Yari Khosroushahi, Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol. Int. 39(8), 881–890 (2015)

    Article  Google Scholar 

  15. A. Wicki, D. Witzigmann, V. Balasubramanian, J. Huwyler, Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control Release. 200, 138–157 (2015)

    Article  Google Scholar 

  16. P.N. Navya, H.K. Daima, Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence 3(1), 1 (2016)

    Article  Google Scholar 

  17. X. Sun, W. Cai, X. Chen, Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Acc. Chem. Res. 48(2), 286–294 (2015)

    Article  Google Scholar 

  18. D.C. Julien, S. Behnke, G. Wang, G.K. Murdoch, R.A. Hill, Utilization of monoclonal antibody-targeted nanomaterials in the treatment of cancer. MAbs 3(5), 467–478 (2011)

    Article  Google Scholar 

  19. Y. Bi, F. Hao, G. Yan, L. Teng, R.J. Lee, J. Xie, Actively targeted nanoparticles for drug delivery to tumor. Curr. Drug Metab. 17(8), 763–782 (2016)

    Article  Google Scholar 

  20. A. Salvati, A.S. Pitek, M.P. Monopoli, K. Prapainop, F.B. Bombelli, D.R. Hristov et al., Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8(2), 137–143 (2013)

    Article  ADS  Google Scholar 

  21. T. Tashima, Intelligent substance delivery into cells using cell-penetrating peptides. Bioorg. Med. Chem. Lett. 27(2), 121–130 (2017)

    Article  Google Scholar 

  22. M.L. Amin, J.Y. Joo, D.K. Yi, S.S. An, Surface modification and local orientations of surface molecules in nanotherapeutics. J. Control Release 207, 131–142 (2015)

    Article  Google Scholar 

  23. D. Patel, A. Kell, B. Simard, J. Deng, B. Xiang, H.Y. Lin et al., Cu2+ -labeled, SPION loaded porous silica nanoparticles for cell labeling and multifunctional imaging probes. Biomaterials 31(10), 2866–2873 (2010)

    Article  Google Scholar 

  24. D. Hong, H. Lee, B.J. Kim, T. Park, J.Y. Choi, M. Park et al., A degradable polydopamine coating based on disulfide-exchange reaction. Nanoscale 7(47), 20149–20154 (2015)

    Article  ADS  Google Scholar 

  25. Y. Zhang, C.Y. Ang, M. Li, S.Y. Tan, Q. Qu, Z. Luo et al., Polymer-coated hollow mesoporous silica nanoparticles for triple-responsive drug delivery. ACS Appl. Mater. Interfaces 7(32), 18179–18187 (2015)

    Article  Google Scholar 

  26. H. Kakwere, M.P. Leal, M.E. Materia, A. Curcio, P. Guardia, D. Niculaes et al., Functionalization of strongly interacting magnetic nanocubes with (thermo)responsive coating and their application in hyperthermia and heat-triggered drug delivery. ACS Appl. Mater. Interfaces 7(19), 10132–10145 (2015)

    Article  Google Scholar 

  27. J. Zhuang, R. Chacko, D.F. Amado Torres, H. Wang, S. Thayumanavan, Dual stimuli—dual response nanoassemblies prepared from a simple homopolymer. ACS Macro Lett. 3(1), 1–5 (2014)

    Article  Google Scholar 

  28. J. Fu, T. Chen, M. Wang, N. Yang, S. Li, Y. Wang et al., Acid and alkaline dual stimuli-responsive mechanized hollow mesoporous silica nanoparticles as smart nanocontainers for intelligent anticorrosion coatings. ACS Nano 7(12), 11397–11408 (2013)

    Article  Google Scholar 

  29. X. Chen, J. Gao, B. Song, M. Smet, X. Zhang, Stimuli-responsive wettability of nonplanar substrates: pH-controlled floatation and supporting force. Langmuir 26(1), 104–108 (2010)

    Article  Google Scholar 

  30. E. Frohlich, Action of nanoparticles on platelet activation and plasmatic coagulation. Curr. Med. Chem. 23(5), 408–430 (2016)

    Article  Google Scholar 

  31. J.P. Almeida, A.L. Chen, A. Foster, R. Drezek, In vivo biodistribution of nanoparticles. Nanomedicine 6(5), 815–835 (2011) (London, England)

    Article  Google Scholar 

  32. J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung et al., Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliv. Rev. 65(5), 622–648 (2013)

    Article  Google Scholar 

  33. F. Farjadian, S. Ghasemi, S. Mohammadi-Samani, Hydroxyl-modified magnetite nanoparticles as novel carrier for delivery of methotrexate. Int. J. Pharm. 504(1–2), 110–116 (2016)

    Article  Google Scholar 

  34. N.R. Boase, I. Blakey, K.J. Thurecht, Molecular imaging with polymers. Polym. Chem. 3(6), 1384–1389 (2012)

    Article  Google Scholar 

  35. J.P. Meyer, P. Adumeau, J.S. Lewis, B.M. Zeglis, Click chemistry and radiochemistry: the first 10 years. Bioconjug. Chem. 27(12), 2791–2807 (2016)

    Article  Google Scholar 

  36. R.P. Bagwe, L.R. Hilliard, W. Tan, Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(9), 4357–4362 (2006)

    Article  Google Scholar 

  37. J.V. Hollingsworth, N.V. Bhupathiraju, J. Sun, E. Lochner, M.G. Vicente, P.S. Russo, Preparation of metalloporphyrin-bound superparamagnetic silica particles via “click” reaction. ACS Appl. Mater. Interfaces 8(1), 792–801 (2016)

    Article  Google Scholar 

  38. Q. Chen, Q. Sun, N.M. Molino, S.W. Wang, E.T. Boder, W. Chen, Sortase A-mediated multi-functionalization of protein nanoparticles. Chem. Commun. 51(60), 12107–12110 (2015)

    Article  Google Scholar 

  39. A. Therien, M. Bedard, D. Carignan, G. Rioux, L. Gauthier-Landry, M.E. Laliberte-Gagne et al., A versatile papaya mosaic virus (PapMV) vaccine platform based on sortase-mediated antigen coupling. J. Nanobiotechnol. 15(1), 54 (2017)

    Article  Google Scholar 

  40. Y. Liu, Q. Miao, P. Zou, L. Liu, X. Wang, L. An et al., Enzyme-controlled intracellular self-assembly of 18F nanoparticles for enhanced microPET imaging of tumor. Theranostics 5(10), 1058–1067 (2015)

    Article  Google Scholar 

  41. L. Tang, Y. Wang, J. Li, The graphene/nucleic acid nanobiointerface. Chem. Soc. Rev. 44(19), 6954–6980 (2015)

    Article  Google Scholar 

  42. X. Mao, J. Xu, H. Cui, Functional nanoparticles for magnetic resonance imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8(6), 814–841 (2016)

    Article  Google Scholar 

  43. W. Kong, T. Sun, B. Chen, X. Chen, F. Ai, X. Zhu et al., A general strategy for ligand exchange on upconversion nanoparticles. Inorg. Chem. 56(2), 872–877 (2017)

    Article  Google Scholar 

  44. S. Bhattacharyya, R.A. Kudgus, R. Bhattacharya, P. Mukherjee, Inorganic nanoparticles in cancer therapy. Pharm. Res. 28(2), 237–259 (2011)

    Article  Google Scholar 

  45. J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, P. Couvreur, Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev. 42(3), 1147–1235 (2013)

    Article  Google Scholar 

  46. F. Canfarotta, S.A. Piletsky, Engineered magnetic nanoparticles for biomedical applications. Adv. Health Mater. 3(2), 160–175 (2014)

    Article  Google Scholar 

  47. O. Carion, B. Mahler, T. Pons, B. Dubertret, Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nat. Protoc. 2(10), 2383–2390 (2007)

    Article  Google Scholar 

  48. H. Wang, R. Kumar, D. Nagesha, R.I. Duclos Jr., S. Sridhar, S.J. Gatley, Integrity of 111In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse. Nucl. Med. Biol. 42(1), 65–70 (2015)

    Article  Google Scholar 

  49. H. Fan, E.W. Leve, C. Scullin, J. Gabaldon, D. Tallant, S. Bunge et al., Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett. 5(4), 645–648 (2005)

    Article  ADS  Google Scholar 

  50. R.J. Bose, S.H. Lee, H. Park, Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments. Drug Discov. Today 21(8), 1303–1312 (2016)

    Article  Google Scholar 

  51. G. Shim, M.G. Kim, J.Y. Park, Y.K. Oh, Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Adv. Drug Deliv. Rev. 105(Pt B), 205–227 (2016)

    Article  Google Scholar 

  52. G. Prencipe, S.M. Tabakman, K. Welsher, Z. Liu, A.P. Goodwin, L. Zhang et al., PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 131(13), 4783–4787 (2009)

    Article  Google Scholar 

  53. D. Chen, D. Yang, C.A. Dougherty, W. Lu, H. Wu, X. He et al., In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metal-organic frameworks nanomaterials. ACS Nano 11(4), 4315–4327 (2017)

    Article  Google Scholar 

  54. A.O. Elzoghby, M.M. Elgohary, N.M. Kamel, Implications of protein- and peptide-based nanoparticles as potential vehicles for anticancer drugs. Adv. Protein Chem. Struct. Biol. 98, 169–221 (2015)

    Article  Google Scholar 

  55. E. Yasun, C. Li, I. Barut, D. Janvier, L. Qiu, C. Cui et al., BSA modification to reduce CTAB induced nonspecificity and cytotoxicity of aptamer-conjugated gold nanorods. Nanoscale 7(22), 10240–10248 (2015)

    Article  ADS  Google Scholar 

  56. T.V. Verissimo, N.T. Santos, J.R. Silva, R.B. Azevedo, A.J. Gomes, C.N. Lunardi, In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Mater. Sci. Eng. C Mater. Biol. Appl. 65, 199–204 (2016)

    Article  Google Scholar 

  57. S.B. Lee, H.W. Lee, T.D. Singh, Y. Li, S.K. Kim, S.J. Cho et al., Visualization of macrophage recruitment to inflammation lesions using highly sensitive and stable radionuclide-embedded gold nanoparticles as a nuclear bio-imaging platform. Theranostics 7(4), 926–934 (2017)

    Article  Google Scholar 

  58. H. Heinz, H. Ramezani-Dakhel, Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chem. Soc. Rev. 45(2), 412–448 (2016)

    Article  Google Scholar 

  59. Y. Kapilov-Buchman, E. Lellouche, S. Michaeli, J.P. Lellouche, Unique surface modification of silica nanoparticles with polyethylenimine (PEI) for siRNA delivery using cerium cation coordination chemistry. Bioconjug. Chem. 26(5), 880–889 (2015)

    Article  Google Scholar 

  60. S. Shi, F. Chen, W. Cai, Biomedical applications of functionalized hollow mesoporous silica nanoparticles: focusing on molecular imaging. Nanomed. (Lond.) 8(12), 2027–2039 (2013)

    Article  Google Scholar 

  61. X. Huang, F. Zhang, S. Lee, M. Swierczewska, D.O. Kiesewetter, L. Lang et al., Long-term multimodal imaging of tumor draining sentinel lymph nodes using mesoporous silica-based nanoprobes. Biomaterials 33(17), 4370–4378 (2012)

    Article  Google Scholar 

  62. F. Chen, H.F. Valdovinos, R. Hernandez, S. Goel, T.E. Barnhart, W. Cai, Intrinsic radiolabeling of Titanium-45 using mesoporous silica nanoparticles. Acta Pharmacol. Sin. 38(6), 907–913 (2017)

    Article  Google Scholar 

  63. P.A. Ellison, F. Chen, S. Goel, T.E. Barnhart, R.J. Nickles, O.T. DeJesus et al., Intrinsic and stable conjugation of thiolated mesoporous silica nanoparticles with radioarsenic. ACS Appl. Mater. Interfaces 9(8), 6772–6781 (2017)

    Article  Google Scholar 

  64. S. Goel, F. Chen, S. Luan, H.F. Valdovinos, S. Shi, S.A. Graves et al., Engineering intrinsically zirconium-89 radiolabeled self-destructing mesoporous silica nanostructures for in vivo biodistribution and tumor targeting studies. Adv. Sci. 3(11), 1600122 (2016)

    Article  Google Scholar 

  65. F. Chen, S. Goel, H.F. Valdovinos, H. Luo, R. Hernandez, T.E. Barnhart et al., In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles. ACS Nano 9(8), 7950–7959 (2015)

    Article  Google Scholar 

  66. F. Chen, H. Hong, S. Shi, S. Goel, H.F. Valdovinos, R. Hernandez et al., Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Sci. Rep. 4, 5080 (2014)

    Article  Google Scholar 

  67. F. Chen, H. Hong, Y. Zhang, H.F. Valdovinos, S. Shi, G.S. Kwon et al., In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 7(10), 9027–9039 (2013)

    Article  Google Scholar 

  68. D. Desai, J. Zhang, J. Sandholm, J. Lehtimaki, T. Gronroos, J. Tuomela et al., Lipid bilayer-gated mesoporous silica nanocarriers for tumor-targeted delivery of zoledronic acid in Vivo. Mol. Pharm. 14(9), 3218–3227 (2017)

    Article  Google Scholar 

  69. D. Chen, C.A. Dougherty, K. Zhu, H. Hong, Theranostic applications of carbon nanomaterials in cancer: focus on imaging and cargo delivery. J. Control Release 210, 230–245 (2015)

    Article  Google Scholar 

  70. K. Yang, L. Feng, H. Hong, W. Cai, Z. Liu, Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat. Protoc. 8(12), 2392–2403 (2013)

    Article  Google Scholar 

  71. M. Xu, J. Zhu, F. Wang, Y. Xiong, Y. Wu, Q. Wang et al., Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: poly (acrylic acid)-functionalization is superior to PEGylation. ACS Nano 10(3), 3267–3281 (2016)

    Article  Google Scholar 

  72. S. Shi, F. Chen, E.B. Ehlerding, W. Cai, Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjug. Chem. 25(9), 1609–1619 (2014)

    Article  Google Scholar 

  73. H. Hong, Y. Zhang, J.W. Engle, T.R. Nayak, C.P. Theuer, R.J. Nickles et al., In vivo targeting and positron emission tomography imaging of tumor vasculature with 66Ga-labeled nano-graphene. Biomaterials 33(16), 4147–4156 (2012)

    Article  Google Scholar 

  74. H. Hong, K. Yang, Y. Zhang, J.W. Engle, L. Feng, Y. Yang et al., In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano 6(3), 2361–2370 (2012)

    Article  Google Scholar 

  75. D. Yang, L. Feng, C.A. Dougherty, K.E. Luker, D. Chen, M.A. Cauble et al., In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials 104, 361–371 (2016)

    Article  Google Scholar 

  76. B. Cornelissen, S. Able, V. Kersemans, P.A. Waghorn, S. Myhra, K. Jurkshat et al., Nanographene oxide-based radioimmunoconstructs for in vivo targeting and SPECT imaging of HER2-positive tumors. Biomaterials 34(4), 1146–1154 (2013)

    Article  Google Scholar 

  77. S. Shi, C. Xu, K. Yang, S. Goel, H.F. Valdovinos, H. Luo et al., Chelator-free radiolabeling of nanographene: breaking the stereotype of chelation. Angew. Chem. Int. Ed. Engl. 56(11), 2889–2892 (2017)

    Article  Google Scholar 

  78. S. Shi, K. Yang, H. Hong, H.F. Valdovinos, T.R. Nayak, Y. Zhang et al., Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials 34(12), 3002–3009 (2013)

    Article  Google Scholar 

  79. C. Xu, S. Shi, L. Feng, F. Chen, S.A. Graves, E.B. Ehlerding et al., Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging. Nanoscale 8(25), 12683–12692 (2016)

    Article  ADS  Google Scholar 

  80. S. Same, A. Aghanejad, S. Akbari Nakhjavani, J. Barar, Y. Omidi, Radiolabeled theranostics: magnetic and gold nanoparticles. BioImpacts 6(3), 169–181 (2016)

    Article  Google Scholar 

  81. H. Hong, F. Chen, W. Cai, Pharmacokinetic issues of imaging with nanoparticles: focusing on carbon nanotubes and quantum dots. Mol. Imaging Biol. 15(5), 507–520 (2013)

    Article  Google Scholar 

  82. Y.I. Park, K.T. Lee, Y.D. Suh, T. Hyeon, Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem. Soc. Rev. 44(6), 1302–1317 (2015)

    Article  Google Scholar 

  83. Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Biomedical applications of zinc oxide nanomaterials. Cur Mol Med. 13(10), 1633–1645 (2013)

    Article  Google Scholar 

  84. F. Chen, S. Goel, R. Hernandez, S.A. Graves, S. Shi, R.J. Nickles et al., Dynamic positron emission tomography imaging of renal clearable gold nanoparticles. Small 12(20), 2775–2782 (2016)

    Article  Google Scholar 

  85. M. Felber, M. Bauwens, J.M. Mateos, S. Imstepf, F.M. Mottaghy, R. Alberto, 99mTc radiolabeling and biological evaluation of nanoparticles functionalized with a versatile coating ligand. Chemistry 21(16), 6090–6099 (2015)

    Article  Google Scholar 

  86. J. Lee, T.S. Lee, J. Ryu, S. Hong, M. Kang, K. Im et al., RGD peptide-conjugated multimodal NaGdF4:Yb3+/Er3+ nanophosphors for upconversion luminescence, MR, and PET imaging of tumor angiogenesis. J. Nucl. Med. 54(1), 96–103 (2013)

    Article  Google Scholar 

  87. J. Peng, Y. Sun, L. Zhao, Y. Wu, W. Feng, Y. Gao et al., Polyphosphoric acid capping radioactive/upconverting NaLuF4: Yb, Tm, 153Sm nanoparticles for blood pool imaging in vivo. Biomaterials 34(37), 9535–9544 (2013)

    Article  Google Scholar 

  88. A.A. Bogdanov Jr., S. Gupta, N. Koshkina, S.J. Corr, S. Zhang, S.A. Curley et al., Gold nanoparticles stabilized with MPEG-grafted poly(l-lysine): in vitro and in vivo evaluation of a potential theranostic agent. Bioconjug. Chem. 26(1), 39–50 (2015)

    Article  Google Scholar 

  89. M. Zhou, S. Song, J. Zhao, M. Tian, C. Li, Theranostic CuS nanoparticles targeting folate receptors for PET image-guided photothermal therapy. J Mater. Chem B 3(46), 8939–8948 (2015)

    Article  Google Scholar 

  90. F. Gao, P. Cai, W. Yang, J. Xue, L. Gao, R. Liu et al., Ultrasmall [64Cu] Cu nanoclusters for targeting orthotopic lung tumors using accurate positron emission tomography imaging. ACS Nano 9(5), 4976–4986 (2015)

    Article  Google Scholar 

  91. S. Shi, B.C. Fliss, Z. Gu, Y. Zhu, H. Hong, H.F. Valdovinos et al., Chelator-free labeling of layered double hydroxide nanoparticles for in vivo PET imaging. Sci. Rep. 5, 16930 (2015)

    Article  ADS  Google Scholar 

  92. F. Chen, H. Hong, S. Goel, S.A. Graves, H. Orbay, E.B. Ehlerding et al., In vivo tumor vasculature targeting of CuS@ MSN based theranostic nanomedicine. ACS Nano 9(4), 3926–3934 (2015)

    Article  Google Scholar 

  93. M. Mahdavi, M.B. Ahmad, M.J. Haron, F. Namvar, B. Nadi, M.Z.A. Rahman et al., Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18(7), 7533–7548 (2013)

    Article  Google Scholar 

  94. R. Chakravarty, H.F. Valdovinos, F. Chen, C.M. Lewis, P.A. Ellison, H. Luo et al., Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR imaging. Adv. Mater. 26(30), 5119–5123 (2014)

    Article  Google Scholar 

  95. F. Chen, P.A. Ellison, C.M. Lewis, H. Hong, Y. Zhang, S. Shi et al., Chelator-free synthesis of a dual-modality PET/MRI agent. Angew. Chem. Int. Ed. Engl. 52(50), 13319–13323 (2013)

    Article  Google Scholar 

  96. A.A. Barrefelt, T.B. Brismar, G. Egri, P. Aspelin, A. Olsson, L. Oddo et al., Multimodality imaging using SPECT/CT and MRI and ligand functionalized 99mTc-labeled magnetic microbubbles. EJNMMI Res. 3(1), 12 (2013)

    Article  Google Scholar 

  97. J.-S. Choi, N. Meghani, Impact of surface modification in BSA nanoparticles for uptake in cancer cells. Colloid Surf. B 145, 653–661 (2016)

    Article  Google Scholar 

  98. J. Zhang, L. Lang, Z. Zhu, F. Li, G. Niu, X. Chen, Clinical translation of an albumin-binding PET radiotracer 68Ga-NEB. J. Nucl. Med. 56(10), 1609–1614 (2015)

    Article  Google Scholar 

  99. G. Niu, L. Lang, D.O. Kiesewetter, Y. Ma, Z. Sun, N. Guo et al., In vivo labeling of serum albumin for PET. J. Nucl. Med. 55(7), 1150–1156 (2014)

    Article  Google Scholar 

  100. A. Todica, S. Brunner, G. Böning, S. Lehner, S.G. Nekolla, M. Wildgruber et al., [68Ga]-albumin-PET in the monitoring of left ventricular function in murine models of ischemic and dilated cardiomyopathy: comparison with cardiac MRI. Mol. Imaging Biol. 15(4), 441 (2013)

    Article  Google Scholar 

  101. D.A. Heuveling, A. van Schie, D.J. Vugts, N.H. Hendrikse, M. Yaqub, O.S. Hoekstra et al., Pilot study on the feasibility of PET/CT lymphoscintigraphy with 89Zr-nanocolloidal albumin for sentinel node identification in oral cancer patients. J. Nucl. Med. 54(4), 585–589 (2013)

    Article  Google Scholar 

  102. D.A. Heuveling, G.W. Visser, M. Baclayon, W.H. Roos, G.J. Wuite, O.S. Hoekstra et al., 89Zr-nanocolloidal albumin-based PET/CT lymphoscintigraphy for sentinel node detection in head and neck cancer: preclinical results. J. Nucl. Med. 52(10), 1580–1584 (2011)

    Article  Google Scholar 

  103. C. Perez-Medina, J. Tang, D. Abdel-Atti, B. Hogstad, M. Merad, E.A. Fisher et al., PET imaging of tumor-associated macrophages with 89Zr-labeled high-density lipoprotein nanoparticles. J. Nucl. Med. 56(8), 1272–1277 (2015)

    Article  Google Scholar 

  104. S. Shukla, N.F. Steinmetz, Virus-based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(5), 708–721 (2015)

    Article  Google Scholar 

  105. S.M. Janib, S. Liu, R. Park, M.K. Pastuszka, P. Shi, A.S. Moses et al., Kinetic quantification of protein polymer nanoparticles using non-invasive imaging. Integr. Biol. 5(1), 183–194 (2013)

    Article  Google Scholar 

  106. D. Sleep, Albumin and its application in drug delivery. Expert Opin. Drug Deliv. 12(5), 793–812 (2015)

    Article  Google Scholar 

  107. D. Sleep, J. Cameron, L.R. Evans, Albumin as a versatile platform for drug half-life extension. Biochim. Biophys. Acta 1830(12), 5526–5534 (2013)

    Article  Google Scholar 

  108. E. Frei, Albumin binding ligands and albumin conjugate uptake by cancer cells. Diabetol. Metab. Syndr. 3(1), 11 (2011)

    Article  MathSciNet  Google Scholar 

  109. N.N. Davanzo, D.S. Pellosi, L.P. Franchi, A.C. Tedesco, Light source is critical to induce glioblastoma cell death by photodynamic therapy using chloro-aluminiumphtalocyanine albumin-based nanoparticles. Photodiagn. Photodyn. Ther. 19, 181–183 (2017)

    Article  Google Scholar 

  110. L. Zhou, T. Yang, J. Wang, Q. Wang, X. Lv, H. Ke et al., Size-tunable Gd2O3@ albumin nanoparticles conjugating chlorin e6 for magnetic resonance imaging-guided photo-induced therapy. Theranostics 7(3), 764 (2017)

    Article  Google Scholar 

  111. T. Lin, P. Zhao, Y. Jiang, Y. Tang, H. Jin, Z. Pan et al., Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 10(11), 9999–10012 (2016)

    Article  Google Scholar 

  112. A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, S.W. Joo, N. Zarghami, Y. Hanifehpour et al., Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8(1), 102 (2013)

    Article  ADS  Google Scholar 

  113. T.M. Allen, P.R. Cullis, Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013)

    Article  Google Scholar 

  114. Y. Xia, J. Tian, X. Chen, Effect of surface properties on liposomal siRNA delivery. Biomaterials 79, 56–68 (2016)

    Article  Google Scholar 

  115. S. Hu, M. Niu, F. Hu, Y. Lu, J. Qi, Z. Yin et al., Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media. Int. J. Pharm. 441(1), 693–700 (2013)

    Article  Google Scholar 

  116. Y.-Y. Lin, J.-J. Li, C.-H. Chang, Y.-C. Lu, J.-J. Hwang, Y.-L. Tseng et al., Evaluation of pharmacokinetics of 111In-labeled VNB-PEGylated liposomes after intraperitoneal and intravenous administration in a tumor/ascites mouse model. Cancer Biother. Radiopharm. 24(4), 453–460 (2009)

    Article  Google Scholar 

  117. J.W. Seo, H. Zhang, D.L. Kukis, C.F. Meares, K.W. Ferrara, A novel method to label preformed liposomes with 64Cu for positron emission tomography (PET) imaging. Bioconjug. Chem. 19(12), 2577–2584 (2008)

    Article  Google Scholar 

  118. J. Kim, D.N. Pandya, W. Lee, J.W. Park, Y.J. Kim, W. Kwak et al., Vivid tumor imaging utilizing liposome-carried bimodal radiotracer. ACS Med. Chem. Lett. 5(4), 390–394 (2014)

    Article  Google Scholar 

  119. T.X. Nguyen, L. Huang, M. Gauthier, G. Yang, Q. Wang, Recent advances in liposome surface modification for oral drug delivery. Nanomedicine 11(9), 1169–1185 (2016)

    Article  Google Scholar 

  120. Y.-B. Huang, M.-J. Tsai, P.-C. Wu, Y.-H. Tsai, Y.-H. Wu, J.-Y. Fang, Elastic liposomes as carriers for oral delivery and the brain distribution of (+)-catechin. J. Drug Target 19(8), 709–718 (2011)

    Article  Google Scholar 

  121. S. Jain, S.R. Patil, N.K. Swarnakar, A.K. Agrawal, Oral delivery of doxorubicin using novel polyelectrolyte-stabilized liposomes (layersomes). Mol. Pharm. 9(9), 2626–2635 (2012)

    Article  Google Scholar 

  122. S. Edmonds, A. Volpe, H. Shmeeda, A.C. Parente-Pereira, R. Radia, J. Baguna-Torres et al., Exploiting the metal-chelating properties of the drug cargo for in vivo positron emission tomography imaging of liposomal nanomedicines. ACS Nano 10(11), 10294–10307 (2016)

    Article  Google Scholar 

  123. L. Feng, L. Cheng, Z. Dong, D. Tao, T.E. Barnhart, W. Cai et al., Theranostic liposomes with hypoxia-activated prodrug to effectively destruct hypoxic tumors post-photodynamic therapy. ACS Nano 11(1), 927–937 (2017)

    Article  Google Scholar 

  124. N. Li, Z. Yu, T.T. Pham, P.J. Blower, R. Yan, A generic 89Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography. Int. J. Nanomed. 12, 3281–3294 (2017)

    Article  Google Scholar 

  125. H. Xing, C.L. Zhang, G. Ruan, J. Zhang, K. Hwang, Y. Lu, Multimodal detection of a small molecule target using stimuli-responsive liposome triggered by aptamer-enzyme conjugate. Anal. Chem. 88(3), 1506–1510 (2016)

    Article  Google Scholar 

  126. A.L. Petersen, T. Binderup, P. Rasmussen, J.R. Henriksen, D.R. Elema, A. Kjær et al., 64Cu loaded liposomes as positron emission tomography imaging agents. Biomaterials 32(9), 2334–2341 (2011)

    Article  Google Scholar 

  127. Y. Du, X. Liang, Y. Li, T. Sun, Z. Jin, H. Xue et al., Nuclear and fluorescent labeled PD-1-liposome-DOX-64Cu/IRDye800CW allows improved breast tumor targeted imaging and therapy. Mol. Pharm. (2017) (Epub)

    Google Scholar 

  128. C. Rangger, A. Helbok, J. Sosabowski, C. Kremser, G. Koehler, R. Prassl et al., Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles. Int. J. Nanomed. 8, 4659–4671 (2013)

    Article  Google Scholar 

  129. J. Malinge, B. Geraudie, P. Savel, V. Nataf, A. Prignon, C. Provost et al., Liposomes for PET and MR imaging and for dual targeting (magnetic field/glucose moiety): synthesis, properties, and in vivo studies. Mol. Pharm. 14(2), 406–414 (2017)

    Article  Google Scholar 

  130. H. Cabral, K. Kataoka, Progress of drug-loaded polymeric micelles into clinical studies. J. Control Release 190, 465–476 (2014)

    Article  Google Scholar 

  131. M. Elsabahy, K.L. Wooley, Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41(7), 2545–2561 (2012)

    Article  Google Scholar 

  132. D.E. Owens, N.A. Peppas, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307(1), 93–102 (2006)

    Article  Google Scholar 

  133. L.H. Feng, C.L. Zhu, H.X. Yuan, L.B. Liu, F.T. Lv, S. Wang, Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 42(16), 6620–6633 (2013)

    Article  Google Scholar 

  134. N.J. Warren, S.P. Armes, Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 136(29), 10174–10185 (2014)

    Article  Google Scholar 

  135. M. Huo, J. Yuan, L. Tao, Y. Wei, Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem. 5(5), 1519–1528 (2014)

    Article  Google Scholar 

  136. Y. Hu, M. Deng, H. Yang, L. Chen, C. Xiao, X. Zhuang et al., Multi-responsive core-crosslinked poly (thiolether ester) micelles for smart drug delivery. Polymer 110, 235–241 (2017)

    Article  Google Scholar 

  137. Y. Xiao, H. Hong, A. Javadi, J.W. Engle, W. Xu, Y. Yang et al., Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials 33(11), 3071–3082 (2012)

    Article  Google Scholar 

  138. K. Tanaka, E.R. Siwu, K. Minami, K. Hasegawa, S. Nozaki, Y. Kanayama et al., Noninvasive imaging of dendrimer-type N-glycan clusters: in vivo dynamics dependence on oligosaccharide structure. Angew. Chem. Int. Ed. Engl. 49(44), 8195–8200 (2010)

    Article  Google Scholar 

  139. S. Kannan, H. Dai, R.S. Navath, B. Balakrishnan, A. Jyoti, J. Janisse et al., Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci. Transl. Med. 4(130), 130ra46-ra46 (2012)

    Article  Google Scholar 

  140. R. Kannan, E. Nance, S. Kannan, D. Tomalia, Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J. Intern. Med. 276(6), 579–617 (2014)

    Article  Google Scholar 

  141. L. Zhao, M. Zhu, Y. Li, Y. Xing, J. Zhao, Radiolabeled dendrimers for nuclear medicine applications. Molecules 22(9), E1350 (2017)

    Article  Google Scholar 

  142. B. Nottelet, V. Darcos, J. Coudane, Aliphatic polyesters for medical imaging and theranostic applications. Eur. J. Pharm. Biopharm. 97(Pt B), 350–370 (2015)

    Article  Google Scholar 

  143. J.H. Myung, H.J. Hsu, J. Bugno, K.A. Tam, S. Hong, Chemical structure and surface modification of dendritic nanomaterials tailored for therapeutic and diagnostic applications. Curr. Top. Med. Chem. 17(13), 1542–1554 (2017)

    Article  Google Scholar 

  144. J.W. Seo, H. Baek, L.M. Mahakian, J. Kusunose, J. Hamzah, E. Ruoslahti et al., 64Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug. Chem. 25(2), 231–239 (2014)

    Article  Google Scholar 

  145. G.K. Grunwald, A. Vetter, K. Klutz, M.J. Willhauck, N. Schwenk, R. Senekowitsch-Schmidtke et al., EGFR-targeted adenovirus dendrimer coating for improved systemic delivery of the theranostic NIS gene. Mol. Ther. Nucl. Acids 2, e131 (2013)

    Article  Google Scholar 

  146. A. Hagooly, A. Almutairi, R. Rossin, M. Shokeen, A. Ananth, C. Anderson et al., Evaluation of a RGD-dendrimer labeled with 76Br in hindlimb ischemia mouse model. J. Nucl. Med. 49(supplement 1), 184P (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, D., Hong, H. (2018). Surface Modification of Radionanomedicine. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_10

Download citation

Publish with us

Policies and ethics