Skip to main content

Tracer Kinetics in Radionanomedicine

  • Chapter
  • First Online:
Radionanomedicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 756 Accesses

Abstract

Quantification of the amount of radiolabeled nanomaterials distributed in the animal and human body is important for understanding their in vivo properties (e.g., target delivery, radiolabeling stability, and excretion pathway) and determining future applications. Tracer kinetic analyses could play a vital role in the success of radionanomedicine as it facilitates the development of clinically relevant nanomaterials by providing the pharmacokinetic information. In this chapter, we describe the methodology used in the tracer kinetic analysis of dynamic positron emission tomography (PET) and single photon emission computed tomography (SPECT), starting from how to record the time profiles of tracer concentration in the blood and tissues, two sources of data required for a tracer kinetic model. Compartment models commonly used in PET and SPECT tracer kinetic analysis and their operational equations for fitting the tissue time-activity curves will be introduced. Then, several robust parameter estimation methods will be described. Finally, we will introduce a few examples of the tracer kinetic analysis in radio-nanomaterial studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.S. Lee, H.-J. Im, Y.-S. Lee, Radionanomedicine: widened perspectives of molecular theragnosis. Nanomedicine 11(4), 795–810 (2015)

    Article  Google Scholar 

  2. E.C. Pratt, T.M. Shaffer, J. Grimm, Nanoparticles and radiotracers: advances toward radionanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8(6), 872–890 (2016)

    Article  Google Scholar 

  3. R.E. Carson, Tracer kinetic modeling in PET, in Positron Emission Tomography (Springer, Berlin, 2005), pp. 127–159

    Google Scholar 

  4. A. Gjedde, W.R. Bauer, D. Wong, Neurokinetics: The Dynamics of Neurobiology In Vivo (Springer Science & Business Media, Berlin. 2010)

    Google Scholar 

  5. J.S. Lee, D.S. Lee, Tracer kinetic analysis for PET and SPECT. Med. Imaging Technol. Appl. 201(3) (2013)

    Google Scholar 

  6. S.R. Cherry, J. Sorenson, M.E. Phelps, B.M. Methé, Physics in nuclear medicine. Med. Phys. 31(8), 2370–2371 (2004)

    Article  Google Scholar 

  7. E. Kim, O.D. Howes, B.-H. Kim, M.-W. Chon, S. Seo, F.E. Turkheimer et al., Regional differences in serotonin transporter occupancy by escitalopram: an [11C] DASB PK-PD study. Clin. Pharmacokinet. 56(4), 371–381 (2017)

    Article  Google Scholar 

  8. J.S. Lee, D.S. Lee, Analysis of functional brain images using population-based probabilistic atlas. Curr. Med. Imaging Rev. 1(1), 81–87 (2005)

    Article  ADS  Google Scholar 

  9. J.-Y. Lee, S.H. Seo, Y.K. Kim, H.B. Yoo, Y.E. Kim, I.C. Song et al., Extrastriatal dopaminergic changes in Parkinson’s disease patients with impulse control disorders. J. Neurol. Neurosurg. Psychiatry (2013)

    Google Scholar 

  10. Y. Choi, R.A. Hawkins, S.-C. Huang, S.S. Gambhir, R.C. Brunken, M.E. Phelps et al., Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F] fluoro-2-deoxy-d-glucose studies. J. Nucl. Med. 32(4), 733–738 (1991)

    Google Scholar 

  11. R.N. Gunn, A.A. Lammertsma, S.P. Hume, V.J. Cunningham, Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6(4), 279–287 (1997)

    Article  Google Scholar 

  12. J.S. Lee, D.S. Lee, J.Y. Ahn, J.S. Yeo, G.J. Cheon, S.-K. Kim et al., Generation of parametric image of regional myocardial blood flow using H 152 O dynamic PET and a linear least-squares method. J. Nucl. Med. 46(10), 1687–1695 (2005)

    Google Scholar 

  13. S. Seo, S.J. Kim, Y.K. Kim, J.-Y. Lee, J.M. Jeong, D.S. Lee et al., Comparative assessment of parametric neuroreceptor mapping approaches based on the simplified reference tissue model using [11C] ABP688 PET. J. Cereb. Blood Flow Metab. 35(12), 2098–2108 (2015)

    Article  Google Scholar 

  14. Y. Zhou, C.J. Endres, J.R. Brašić, S.-C. Huang, D.F. Wong, Linear regression with spatial constraint to generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue model. Neuroimage. 18(4), 975–989 (2003)

    Article  Google Scholar 

  15. H. Iida, T. Jones, S. Miura, Modeling approach to eliminate the need to separate arterial plasma in oxygen-15 inhalation positron emission tomography. J. Nucl. Med. 34(1333–1340), 18 (1993)

    Google Scholar 

  16. E. Meyer, Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H 152 O autoradiographic method and dynamic PET. J. Nucl. Med. 30(6), 1069–1078 (1989)

    Google Scholar 

  17. J.H. Kim, Y.H. Kim, Y.J. Kim, B.Y. Yang, J.M. Jeong, H. Youn et al., Quantitative positron emission tomography imaging of angiogenesis in rats with forelimb ischemia using 68Ga-NOTA-c(RGDyK). Angiogenesis 16(4), 837–846 (2013)

    Article  Google Scholar 

  18. J.W. Kim, S. Seo, H.S. Kim, D.-Y. Kim, H.-Y. Lee, K.W. Kang et al., Comparative evaluation of the algorithms for parametric mapping of the novel myocardial PET imaging agent 18F-FPTP. Ann. Nucl. Med. 1–11 (2017)

    Google Scholar 

  19. S.J. Kim, J.S. Lee, Y.K. Kim, J. Frost, G. Wand, M.E. McCaul et al., Multiple linear analysis methods for the quantification of irreversibly binding radiotracers. J. Cereb. Blood Flow Metab. 28(12), 1965–1977 (2008)

    Article  Google Scholar 

  20. P. Zanotti-Fregonara, K. Chen, J.S. Liow, M. Fujita, R.B. Innis, Image-derived input function for brain PET studies: many challenges and few opportunities. J. Cereb. Blood Flow Metab. 31(10), 1986–1998 (2011)

    Article  Google Scholar 

  21. J.Y. Ahn, D.S. Lee, J.S. Lee, S.K. Kim, G.J. Cheon, J.S. Yeo et al., Quantification of regional myocardial blood flow using dynamic H 152 O PET and factor analysis. J. Nucl. Med. 42(5), 782–787 (2001)

    Google Scholar 

  22. J.S. Lee, D.S. Lee, J.Y. Ahn, G.J. Cheon, S.K. Kim, J.S. Yeo et al., Blind separation of cardiac components and extraction of input function from H 152 O dynamic myocardial PET using independent component analysis. J. Nucl. Med. 42(6), 938–943 (2001)

    Google Scholar 

  23. M. Naganawa, Y. Kimura, K. Ishii, K. Oda, K. Ishiwata, A. Matani, Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans. Biomed. Eng. 52(2), 201–210 (2005)

    Article  Google Scholar 

  24. S. Eberl, A.R. Anayat, R.R. Fulton, P.K. Hooper, M.J. Fulham, Evaluation of two population-based input functions for quantitative neurological FDG PET studies. Eur. J. Nucl. Med. 24(3), 299–304 (1997)

    Google Scholar 

  25. S. Takikawa, V. Dhawan, P. Spetsieris, W. Robeson, T. Chaly, R. Dahl et al., Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology 188(1), 131–136 (1993)

    Article  Google Scholar 

  26. A.A. Lammertsma, S.P. Hume, Simplified reference tissue model for PET receptor studies. Neuroimage 4(3), 153–158 (1996)

    Article  Google Scholar 

  27. Y. Wu, R.E. Carson, Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J. Cereb. Blood Flow Metab. 22(12), 1440–1452 (2002)

    Article  Google Scholar 

  28. M. Ichise, J.-S. Liow, J.-Q. Lu, A. Takano, K. Model, H. Toyama et al., Linearized reference tissue parametric imaging methods: application to [11C] DASB positron emission tomography studies of the serotonin transporter in human brain. J. Cereb. Blood Flow Metab. 23(9), 1096–1112 (2003)

    Article  Google Scholar 

  29. C. Cobelli, D. Foster, G. Toffolo, Tracer Kinetics in Biomedical Research: From Data to Model (Springer Science & Business Media, Berlin, 2007)

    Google Scholar 

  30. A.J. Fischman, N.M. Alpert, R.H. Rubin, Pharmacokinetic imaging. Clin. Pharmacokinet. 41(8), 581–602 (2002)

    Article  Google Scholar 

  31. S.-C. Huang, J.R. Barrio, M.E. Phelps, Neuroreceptor Assay with Positron Emission Tomography: Equilibrium Versus Dynamic Approaches (SAGE Publications, Sage, 1986)

    Google Scholar 

  32. D.F. Wong, A. Gjedde, H.N. Wagner Jr., Quantification of neuroreceptors in the living human brain. I. Irreversible binding of ligands. J. Cereb. Blood Flow Metab. 6(2), 137–146 (1986)

    Article  Google Scholar 

  33. L. Farde, L. Eriksson, G. Blomquist, C. Halldin, Kinetic analysis of central [11C] raclopride binding to D2-dopamine receptors studied by PET—a comparison to the equilibrium analysis. J. Cereb. Blood Flow Metab. 9(5), 696–708 (1989)

    Article  Google Scholar 

  34. A. Gjedde, High-and low-affinity transport of d-glucose from blood to brain. J. Neurochem. 36(4), 1463–1471 (1981)

    Article  Google Scholar 

  35. C.S. Patlak, R.G. Blasberg, Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow Metab. 5(4), 584–590 (1985)

    Article  Google Scholar 

  36. C.S. Patlak, R.G. Blasberg, J.D. Fenstermacher, Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab. 3(1), 1–7 (1983)

    Article  Google Scholar 

  37. J. Logan, J.S. Fowler, N.D. Volkow, G.-J. Wang, Y.-S. Ding, D.L. Alexoff, Distribution volume ratios without blood sampling from graphical analysis of PET data. J. Cereb. Blood Flow Metab. 16(5), 834–840 (1996)

    Article  Google Scholar 

  38. J. Logan, J.S. Fowler, N.D. Volkow, A.P. Wolf, S.L. Dewey, D.J. Schlyer et al., Graphical analysis of reversible radioligand binding from time—activity measurements applied to [N-11C-methyl]-(−)-cocaine PET studies in human subjects. J. Cereb. Blood Flow Metab. 10(5), 740–747 (1990)

    Article  Google Scholar 

  39. Y. Zhou, W. Ye, J.R. Brašić, A.H. Crabb, J. Hilton, D.F. Wong, A consistent and efficient graphical analysis method to improve the quantification of reversible tracer binding in radioligand receptor dynamic PET studies. Neuroimage 44(3), 661–670 (2009)

    Article  Google Scholar 

  40. S. Seo, S.J. Kim, H.B. Yoo, J.-Y. Lee, Y.K. Kim, D.S. Lee et al., Noninvasive bi-graphical analysis for the quantification of slowly reversible radioligand binding. Phys. Med. Biol. 61(18), 6770 (2016)

    Article  Google Scholar 

  41. Y. Zhou, W. Ye, J.R. Brašić, D.F. Wong, Multi-graphical analysis of dynamic PET. Neuroimage 49(4), 2947–2957 (2010)

    Article  Google Scholar 

  42. S. Seo, S.J. Kim, D.S. Lee, J.S. Lee, Recent advances in parametric neuroreceptor mapping with dynamic PET: basic concepts and graphical analyses. Neurosci. Bull. 30(5), 733–754 (2014)

    Article  Google Scholar 

  43. D. Feng, Z. Wang, S.-C. Huang, A study on statistically reliable and computationally efficient algorithms for generating local cerebral blood flow parametric images with positron emission tomography. IEEE Trans. Med. Imaging 12(2), 182–188 (1993)

    Article  Google Scholar 

  44. D. Feng, S.-C. Huang, Z. Wang, D. Ho, An unbiased parametric imaging algorithm for nonuniformly sampled biomedical system parameter estimation. IEEE Trans. Med. Imaging 15(4), 512–518 (1996)

    Article  Google Scholar 

  45. M. Ichise, H. Toyama, R.B. Innis, R.E. Carson, Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J. Cereb. Blood Flow Metab. 22(10), 1271–1281 (2002)

    Article  Google Scholar 

  46. R.N. Gunn, P.A. Sargent, C.J. Bench, E.A. Rabiner, S. Osman, V.W. Pike et al., Tracer kinetic modeling of the 5-HT 1A receptor ligand [carbonyl-11 C] WAY-100635 for PET. Neuroimage 8(4), 426–440 (1998)

    Article  Google Scholar 

  47. H. Watabe, H. Jino, N. Kawachi, N. Teramoto, T. Hayashi, Y. Ohta et al., Parametric imaging of myocardial blood flow with 15O-water and PET using the basis function method. J. Nucl. Med. 46(7), 1219–1224 (2005)

    Google Scholar 

  48. J.-B. Tylcz, T. Bastogne, H. Benachour, D. Bechet, E. Bullinger, H. Garnier et al., A model-based pharmacokinetics characterization method of engineered nanoparticles for pilot studies. IEEE Trans. Nanobiosci. 14(4), 368–377 (2015)

    Article  Google Scholar 

  49. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control Release 65(1), 271–284 (2000)

    Article  Google Scholar 

  50. Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46(12 Part 1), 6387–6392 (1986)

    Google Scholar 

  51. J.D. Byrne, T. Betancourt, L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 60(15), 1615–1626 (2008)

    Article  Google Scholar 

  52. W. Cai, K. Chen, Z.-B. Li, S.S. Gambhir, X. Chen, Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J. Nucl. Med. 48(11), 1862–1870 (2007)

    Article  Google Scholar 

  53. R. Lehner, X. Wang, S. Marsch, P. Hunziker, Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomedicine 9(6), 742–757 (2013)

    Article  Google Scholar 

  54. D.W. Bartlett, H. Su, I.J. Hildebrandt, W.A. Weber, M.E. Davis, Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc. Natl. Acad. Sci. U.S.A. 104(39), 15549–15554 (2007)

    Article  ADS  Google Scholar 

  55. J.E. Zuckerman, C.H.J. Choi, H. Han, M.E. Davis, Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proc. Natl. Acad. Sci. U.S.A. 109(8), 3137–3142 (2012)

    Article  ADS  Google Scholar 

  56. Y.-G. Wu, Noninvasive quantification of local cerebral metabolic rate of glucose for clinical application using positron emission tomography and 18F-fluoro-2-deoxy-d-glucose. J. Cereb. Blood Flow Metab. 28(2), 242–250 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sung Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, J.S., Seo, S., Lee, D.S. (2018). Tracer Kinetics in Radionanomedicine. In: Lee, D. (eds) Radionanomedicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-67720-0_16

Download citation

Publish with us

Policies and ethics