Skip to main content

Taxol® Biosynthesis and Production: From Forests to Fermenters

  • Chapter
  • First Online:
Biotechnology of Natural Products

Abstract

Taxol® (paclitaxel) has fascinated researchers, medical professionals, politicians and entrepreneurs for almost half a century. Its medicinal value as a potent anti-cancer compound has expanded greatly over time as new applications have been identified for the treatment of diverse indications. Knowledge of its complex biosynthesis pathway remains incomplete, with only 14 of the 19 genes well characterized. Despite this disadvantage, huge strides have been taken towards improving access to this diterpenoid compound and meeting the ever increasing demand. Productivity has increased thanks to the development of new methods, from the pioneering bark extraction techniques and complete chemical synthesis, to semi-synthesis from precursors such as baccatin III extracted from Taxus spp. plant cultures and the first attempts to produce taxol in non-native platforms. The entire pathway should be elucidated within the next decade, perhaps allowing its introduction into a host capable of gram per litre productivity. This review outlines major and recent findings related to the characterization of the taxol biosynthesis pathway, the evolution of production methods and future prospects for exploitation by metabolic engineering of a designed microbial chassis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CPRs:

Cytochrome P450 reductases

DMAPP:

Dimethylallyl diphosphate

DXP:

1-Deoxy-D-xylulose 5-phosphate pathway

GGPP:

Geranylgeranyl diphosphate

HGT:

Horizontal gene transfer

IPP:

Isopentenyl diphosphate

MEP:

2-C-methyl-D-erythritol 4-phosphate pathway

MVA:

Mevalonate pathway

P450:

Cytochrome P450 dependent mono-oxygenase

References

  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 2003;15(1):63–78. https://doi.org/10.1105/tpc.006130.

    Article  CAS  Google Scholar 

  2. Acosta IF, Farmer EE. Jasmonates. The Arabidopsis Book. 2009;8:e0129. https://doi.org/10.1199/tab.0129.

    Article  Google Scholar 

  3. Adelin E, Servy C, Martin MT, Arcile G, Iorga BI, Retailleau P, Bonfill M, Ouazzani J. Bicyclic and tetracyclic diterpenes from a Trichoderma symbiont of Taxus baccata. Phytochemistry. 2014;97:55–61. https://doi.org/10.1016/j.phytochem.2013.10.016.

    Article  CAS  Google Scholar 

  4. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science. 2010;330(6000):70–4. https://doi.org/10.1126/science.1191652.

    Article  CAS  Google Scholar 

  5. Arbuck SG, Blaylock BA. Taxol: clinical results and current issues in development. In: Suffness M, editor. Taxol: science and applications. Boca Raton: CRC Press; 1995. p. 379.

    Google Scholar 

  6. Baloglu E, Kingston DG. A new semisynthesis of paclitaxel from baccatin III. J Nat Prod. 1999;62(7):1068–71. https://doi.org/10.1021/np990040k.

    Article  CAS  Google Scholar 

  7. Barampuram S, Zhang ZJ. Recent advances in plant transformation. In: Plant chromosome engineering: methods and protocols. Methods Mol Biol. 2011;701:1–35. https://doi.org/10.1007/978-1-61737-957-4_1.

    Article  CAS  Google Scholar 

  8. Barnes HJ, Arlotto MP, Waterman MR. Expression and enzymatic-activity of recombinant cytochrome-P450 17-alpha-hydroxylase in Escherichia coli. P Natl Acad Sci USA. 1991;88(13):5597–601. https://doi.org/10.1073/pnas.88.13.5597.

    Article  CAS  Google Scholar 

  9. Barry DA. Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. Vol. 2. In: Hofmeister’s Handbook of Physiological Botany. Engelmann W, Leipzig; 1866.

    Google Scholar 

  10. Barton NA, Marsh BJ, Lewis W, Narraidoo N, Seymour GB, Fray R, Hayes CJ. Accessing low-oxidation state taxanes: is taxadiene-4 (5)-epoxide on the taxol biosynthetic pathway? Chem Sci. 2016;7(5):3102–7. https://doi.org/10.1039/C5SC03463A.

    Article  CAS  Google Scholar 

  11. Bentebibel S, Moyano E, Palazon J, Cusido RM, Bonfill M, Eibl R, Pinol MT. Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnol Bioeng. 2005;89(6):647–55. https://doi.org/10.1002/bit.20321.

    Article  CAS  Google Scholar 

  12. Besumbes O, Sauret-Gueto S, Phillips MA, Imperial S, Rodriguez-Concepcion M, Boronat A. Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of taxol. Biotechnol Bioeng. 2004;88(2):168–75. https://doi.org/10.1002/bit.20237.

    Article  CAS  Google Scholar 

  13. Biggs BW, Lim CG, Sagliani K, Shankar S, Stephanopoulos G, De Mey M, Ajikumar PK. Overcoming heterologous protein interdependency to optimize P450-mediated taxol precursor synthesis in Escherichia coli. P Natl Acad Sci USA. 2016;113(12):3209–14. https://doi.org/10.1073/pnas.1515826113.

    Article  CAS  Google Scholar 

  14. Biggs BW, Rouck JE, Kambalyal A, Arnold W, Lim CG, De Mey M, O’Neil-Johnson M, Starks CM, Das A, Ajikumar PK. Orthogonal assays clarify the oxidative biochemistry of taxol P450 CYP725A4. ACS Chem Biol. 2016. https://doi.org/10.1021/acschembio.5b00968.

  15. Boa A, Jenkins P, Lawrence N. Recent progress in the synthesis of taxanes. Contemp Org Synth. 1994;1(1):47–75. https://doi.org/10.1039/CO9940100047.

    Article  CAS  Google Scholar 

  16. Bomke C, Tudzynski B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry. 2009;70(15–16):1876–93. https://doi.org/10.1016/j.phytochem.2009.05.020.

    Article  CAS  Google Scholar 

  17. Bonfill M, Exposito O, Moyano E, Cusido RM, Palazon J, Pinol MT. Manipulation by culture mixing and elicitation of paclitaxel and baccatin III production in Taxus baccata suspension cultures. Vitro Cell Dev-Pl. 2006;42(5):422–6. https://doi.org/10.1079/Ivp2006761.

    Article  CAS  Google Scholar 

  18. Bonfill M, Bentebibel S, Moyano E, Palazon J, Cusido RM, Eibl R, Pinol MT. Paclitaxel and baccatin III production induced by methyl jasmonate in free and immobilized cells of Taxus baccata. Biol Plant. 2007;51(4):647–52. https://doi.org/10.1007/s10535-007-0137-2.

    Article  CAS  Google Scholar 

  19. Bringi V, Kadkade PG, Prince CL, Schubmehl BF, Kane EJ, Roach B. Enhanced production of taxol and taxanes by cell cultures of Taxus species. U.S. Patent No. 5,407,816. 1995.

    Google Scholar 

  20. Brodelius P. The potential role of immobilization in plant-cell biotechnology. Trends Biotechnol. 1985;3(11):280–5. https://doi.org/10.1016/0167-7799(85)90003-4.

    Article  CAS  Google Scholar 

  21. Brodelius P. Permeabilization of plant-cells for release of intracellularly stored products – viability studies. Appl Microbiol Biotechnol. 1988;27(5–6):561–6. https://doi.org/10.1007/BF00451632.

    Article  CAS  Google Scholar 

  22. Bruňáková K, Babincova Z, Čellárová E. Selection of callus cultures of Taxus baccata L. as a potential source of paclitaxel production. Eng Life Sci. 2004;4(5):465–9. https://doi.org/10.1002/elsc.200420050.

    Article  CAS  Google Scholar 

  23. Cai Z, Kastell A, Knorr D, Smetanska I. Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep. 2012;31(3):461–77. https://doi.org/10.1007/s00299-011-1165-0.

    Article  CAS  Google Scholar 

  24. Celgene Corporation. Celgene 2016 Annual Report. 2016. Retrieved from http://files.shareholder.com/downloads/AMDA-262QUJ/4420895141x0x939757/E2F8A415-6D24-4387-9CEA-D0620358E8E1/Celgene_2016_Annual_Report.pdf

  25. Chang MC, Keasling JD. Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol. 2006;2(12):674–81. https://doi.org/10.1038/nchembio836.

    Article  CAS  Google Scholar 

  26. Chang MCY, Eachus RA, Trieu W, Ro DK, Keasling JD. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol. 2007;3(5):274–7. https://doi.org/10.1038/nchembio875.

    Article  CAS  Google Scholar 

  27. Chau M, Croteau R. Molecular cloning and characterization of a cytochrome P450 taxoid 2 alpha-hydroxylase involved in taxol biosynthesis. Arch Biochem Biophys. 2004;427(1):48–57. https://doi.org/10.1016/j.abb.2004.04.016.

    Article  CAS  Google Scholar 

  28. Chau M, Jennewein S, Walker K, Croteau R. Taxol biosynthesis: molecular cloning and of a cytochrome p450 characterization taxoid 7 beta-hydroxylase. Chem Biol. 2004;11(5):663–72. https://doi.org/10.1016/j.chembiol.2004.02.025.

    CAS  Google Scholar 

  29. Christen A, Bland J, Gibson D Cell cultures as a means to produce taxol. In: Proceedings of the American Association for Cancer Research; 1989. p 566.

    Google Scholar 

  30. Christen AA, Gibson DM, Bland J. Production of taxol or taxol-like compounds in cell culture. 1991. U.S. Patent No. 5,019,504.

    Google Scholar 

  31. Cojocaru V, Winn PJ, Wade RC. The ins and outs of cytochrome P450s. Biochim Biophys Acta-Gen Subj. 2007;1770(3):390–401. https://doi.org/10.1016/j.bbagen.2006.07.005.

    Article  CAS  Google Scholar 

  32. Colling J, Pollier J, Makunga NP, Goossens A cDNA-AFLP-based transcript profiling for genome-wide expression analysis of jasmonate-treated plants and plant cultures. Jasmonate Signal Methods Protocols. 2013; 287–303. doi:https://doi.org/10.1007/978-1-62703-414-2_23.

  33. Compant S, van der Heijden MGA, Sessitsch A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol. 2010;73(2):197–214. https://doi.org/10.1111/j.1574-6941.2010.00900.

    CAS  Google Scholar 

  34. Croteau R, Ketchum RE, Long RM, Kaspera R, Wildung MR. Taxol biosynthesis and molecular genetics. Phytochem Rev. 2006;5(1):75–97. https://doi.org/10.1007/s11101-005-3748-2.

    Article  CAS  Google Scholar 

  35. Cusido RM, Palazon J, Navia-Osorio A, Mallol A, Bonfill M, Morales C, Pinol MT. Production of taxol((R)) and baccatin III by a selected Taxus baccata callus line and its derived cell suspension culture. Plant Sci. 1999;146(2):101–7. https://doi.org/10.1016/S0168-9452(99)00093-X.

    Article  CAS  Google Scholar 

  36. Cusido RM, Palazon J, Bonfill M, Exposito O, Moyano E, Pinol MT. Source of isopentenyl diphosphate for taxol and baccatin III biosynthesis in cell cultures of Taxus baccata. Biochem Eng J. 2007;33(2):159–67. https://doi.org/10.1016/j.bej.2006.10.016.

    Article  CAS  Google Scholar 

  37. Daniewski WM, Gumulka M, Anczewski W, Masnyk M, Bloszyk E, Gupta KK. Why the yew tree (Taxus baccata) is not attacked by insects. Phytochemistry. 1998;49(5):1279–82. https://doi.org/10.1016/S0031-9422(98)00102-2.

    Article  CAS  Google Scholar 

  38. De Geyter N, Gholami A, Goormachtig S, Goossens A. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci. 2012;17(6):349–59. https://doi.org/10.1016/j.tplants.2012.03.001.

    Article  CAS  Google Scholar 

  39. DeJong JM, Liu YL, Bollon AP, Long RM, Jennewein S, Williams D, Croteau RB. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng. 2006;93(2):212–24. https://doi.org/10.1002/bit.20694.

    Article  CAS  Google Scholar 

  40. Delaye L, García-Guzmán G, Heil M. Endophytes versus biotrophic and necrotrophic pathogens – are fungal lifestyles evolutionarily stable traits? Fungal Divers. 2013;60(1):125–35. https://doi.org/10.1007/s13225-013-0240-y.

    Article  Google Scholar 

  41. Denis JN, Greene AE, Guenard D, Gueritte-Voegelein F, Mangatal L, Potier P. Highly efficient, practical approach to natural taxol. J Am Chem Soc. 1988;110(17):5917–9. https://doi.org/10.1021/ja00225a063.

    Article  CAS  Google Scholar 

  42. Deusneumann B, Zenk MH. Instability of indole alkaloid production in Catharanthus roseus cell-suspension cultures. Planta Med. 1984;50(5):427–31. https://doi.org/10.1055/s-2007-969755.

    Article  CAS  Google Scholar 

  43. Ding MZ, Yan HF, Li LF, Zhai F, Shang LQ, Yin Z, Yuan YJ. Biosynthesis of taxadiene in Saccharomyces cerevisiae : selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy. PLoS One. 2014;9(10). https://doi.org/10.1371/journal.pone.0109348.

  44. Dornenburg H, Knorr D. Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzym Microb Technol. 1995;17(8):674–84. https://doi.org/10.1016/0141-0229(94)00108-4.

    Article  Google Scholar 

  45. Edgar S, Zhou K, Qao KJ, King JR, Simpson JH, Stephanopoulos G. Mechanistic insights into taxadiene epoxidation by taxadiene-5 alpha-hydroxylase. ACS Chem Biol. 2016;11(2):460–9. https://doi.org/10.1021/acschembio.5b00767.

    Article  CAS  Google Scholar 

  46. Eisenreich W, Menhard B, Hylands PJ, Zenk MH, Bacher A. Studies on the biosynthesis of taxol: the taxane carbon skeleton is not of mevalonoid origin. P Natl Acad Sci USA. 1996;93(13):6431–6. https://doi.org/10.1073/pnas.93.13.6431.

    Article  CAS  Google Scholar 

  47. Ellis DD, Zeldin EL, Brodhagen M, Russin WA, McCown BH. Taxol production in nodule cultures of Taxus. J Nat Prod. 1996;59(3):246–50. https://doi.org/10.1021/np960104g.

    Article  CAS  Google Scholar 

  48. Elmer W, Mattina M, MacEachern G. Sensitivity of plant pathogenic fungi to taxane extracts from ornamental yews. Phytopathology. 1994;84(10):1179–85. https://doi.org/10.1094/Phyto-84-1179.

    Article  CAS  Google Scholar 

  49. Engels B, Dahm P, Jennewein S. Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards taxol (Paclitaxel) production. Metab Eng. 2008;10(3–4):201–6. https://doi.org/10.1016/j.ymben.2008.03.001.

    Article  CAS  Google Scholar 

  50. Esvelt KM, Wang HH. Genome-scale engineering for systems and synthetic biology. Mol Syst Biol. 2013;9(1):641. https://doi.org/10.1038/msb.2012.66.

    Article  Google Scholar 

  51. Exposito O, Bonfill M, Onrubia M, Jane A, Moyano E, Cusido RM, Palazon J, Pinol MT. Effect of taxol feeding on taxol and related taxane production in Taxus baccata suspension cultures. New Biotechnol. 2009;25(4):252–9. https://doi.org/10.1016/j.nbt.2008.11.001.

    Article  CAS  Google Scholar 

  52. Exposito O, Syklowska-Baranek K, Moyano E, Onrubia M, Bonfill M, Palazon J, Cusido RM. Metabolic responses of Taxus media transformed cell cultures to the addition of methyl Jasmonate. Biotechnol Prog. 2010;26(4):1145–53. https://doi.org/10.1002/btpr.424.

    CAS  Google Scholar 

  53. Fichtner F, Castellanos RU, Ülker B. Precision genetic modifications: a new era in molecular biology and crop improvement. Planta. 2014;239(4):921–39. https://doi.org/10.1007/s00425-014-2029-y.

    Article  CAS  Google Scholar 

  54. Flores-Bustamante ZR, Rivera-Orduna FN, Martinez-Cardenas A, Flores-Cotera LB. Microbial paclitaxel: advances and perspectives. J Antibiot. 2010;63(8):460–7. https://doi.org/10.1038/ja.2010.83.

    Article  CAS  Google Scholar 

  55. Fray RG, Grierson D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol. 1993;22(4):589–602. https://doi.org/10.1007/BF00047400.

    Article  CAS  Google Scholar 

  56. Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box–mediated gene expression. Plant Cell. 2000;12(3):393–404. https://doi.org/10.1105/tpc.12.3.393.

    Article  CAS  Google Scholar 

  57. Gadzovska Simic S, Tusevski O, Maury S, Delaunay A, Joseph C, Hagège D. Effects of polysaccharide elicitors on secondary metabolite production and antioxidant response in Hypericum perforatum L. shoot cultures. ScientificWorldJ. 2014. https://doi.org/10.1155/2014/609649.

  58. Georgiev MI, Weber J, Maciuk A. Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol. 2009;83(5):809–23. https://doi.org/10.1007/s00253-009-2049-x.

    Article  CAS  Google Scholar 

  59. Gibson D, Ketchum R, Vance N, Christen A. Initiation and growth of cell lines of Taxus brevifolia (Pacific yew). Plant Cell Rep. 1993;12(9):479–82. https://doi.org/10.1007/BF00236091.

    Article  CAS  Google Scholar 

  60. Goodman J, Walsh V. The story of taxol : nature and politics in the pursuit of an anti-cancer drug. New York: Cambridge University Press; 2001.

    Google Scholar 

  61. Goossens A. It is easy to get huge candidate gene lists for plant metabolism now, but how to get beyond? Mol Plant. 2015;8(1):2–5. https://doi.org/10.1016/j.molp.2014.08.001.

    Article  CAS  Google Scholar 

  62. Gruchattka E, Hadicke O, Klamt S, Schutz V, Kayser O. In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Microb Cell Factories. 2013;12. https://doi.org/10.1186/1475-2859-12-84.

  63. Gu Y, Wang YL, Ma XP, Wang CD, Yue GZ, Zhang YT, Zhang YY, Li SS, Ling SS, Liu XM, Wen XT, Cao SJ, Huang XB, Deng JL, Zuo ZC, Yu SM, Shen LH, Wu R. Greater taxol yield of fungus Pestalotiopsis hainanensis from dermatitic scurf of the giant panda (Ailuropoda melanoleuca). Appl Biochem Biotechnol. 2015;175(1):155–65. https://doi.org/10.1007/s12010-014-1254-y.

    Article  CAS  Google Scholar 

  64. Gueritte-Voegelein F, Guenard D, Dubois J, Wahl A, Potier P. Chemical and biological studies on taxol (Paclitaxel) and Taxotere (Docetaxel), new antineoplastic agents. J Pharm Belg. 1993;49(3):193–205.

    Google Scholar 

  65. Guerra-Bubb J, Croteau R, Williams RM. The early stages of taxol biosynthesis: an interim report on the synthesis and identification of early pathway metabolites. Nat Prod Rep. 2012;29(6):683–96. https://doi.org/10.1039/c2np20021j.

    Article  CAS  Google Scholar 

  66. Guo BH, Wang YC, Zhou XW, Hu K, Tan F, Miao ZQ, Tang KX. An endophytic taxol-producing fungus BT2 isolated from Taxus chinensis var. mairei. Afr J Biotechnol. 2006;5(10):875–7.

    CAS  Google Scholar 

  67. Hall RD, Yeoman MM. Intercellular and intercultural heterogeneity in secondary metabolite accumulation in cultures of Catharanthus roseus following cell-line selection. J Exp Bot. 1987;38(193):1391–8. https://doi.org/10.1093/jxb/38.8.1391.

    Article  CAS  Google Scholar 

  68. Hallmann J. Plant interactions with endophytic bacteria. New York: CABI Publishing; 2001.

    Book  Google Scholar 

  69. Hao X, Pan J, Zhu X. Taxol producing fungi. In: Natural products: Springer; 2013. p. 2797–812.

    Google Scholar 

  70. Hefner J, Ketchum REB, Croteau R. Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production. Arch Biochem Biophys. 1998;360(1):62–74. https://doi.org/10.1006/abbi.1998.0926.

    Article  CAS  Google Scholar 

  71. Heinig U, Scholz S, Jennewein S. Getting to the bottom of taxol biosynthesis by fungi. Fungal Divers. 2013;60(1):161–70. https://doi.org/10.1007/s13225-013-0228-7.

    Article  Google Scholar 

  72. Heinig UH. Studies on the evolution of complex natural products biosynthetic pathways on basis of taxol biosynthesis in plants and endophytic fungi: RWTH Aachen University; 2012.

    Google Scholar 

  73. Hezari M, Ketchum REB, Gibson DM, Croteau R. Taxol production and taxadiene synthase activity in Taxus canadensis cell suspension cultures. Arch Biochem Biophys. 1997;337(2):185–90. https://doi.org/10.1006/abbi.1996.9772.

    Article  CAS  Google Scholar 

  74. Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 1999;27(1):297–300.

    Article  CAS  Google Scholar 

  75. Hirai S, Utsugi M, Iwamoto M, Nakada M. Formal total synthesis of (−)-taxol through Pd-catalyzed eight-membered carbocyclic ring formation. Chem Eur J. 2015;21(1):355–9. https://doi.org/10.1002/chem.201404295.

    Article  CAS  Google Scholar 

  76. Hoffman A Methods for obtaining taxanes. 2003. U.S. Patent No. 6,638,742.

    Google Scholar 

  77. Holten R, Samoza C, Kim H, Liang F, Biediger R, Boatman P, Shindo M, Smith C, Kim S. First total synthesis of taxol. J Am Chem Soc. 1994;116:1587–600. https://doi.org/10.1021/ja00083a066.

    Article  Google Scholar 

  78. Holton R, Biediger RJ, Boatman PD. Semisynthesis of taxol and taxotere. In: Suffness M, editor. Taxol: science and applications, vol. 22. Boca Raton: CRC Press; 1995. p. 97–121.

    Google Scholar 

  79. Holton RA, Kim HB, Somoza C, Liang F, Biediger RJ, Boatman PD, Shindo M, Smith CC, Kim SC, Nadizadeh H, Suzuki Y, Tao CL, Vu P, Tang SH, Zhang PS, Murthi KK, Gentile LN, Liu JH. First total synthesis of taxol. 2. Completion of the C-ring and D-ring. J Am Chem Soc. 1994;116(4):1599–600. https://doi.org/10.1021/ja00083a067.

    Article  CAS  Google Scholar 

  80. Holton RA, Somoza C, Kim HB, Liang F, Biediger RJ, Boatman PD, Shindo M, Smith CC, Kim SC, Nadizadeh H, Suzuki Y, Tao CL, Vu P, Tang SH, Zhang PS, Murthi KK, Gentile LN, Liu JH. First total synthesis of taxol. 1. Functionalization of the B-ring. J Am Chem Soc. 1994;116(4):1597–8. https://doi.org/10.1021/ja00083a066.

    Article  CAS  Google Scholar 

  81. Huang QL, Roessner CA, Croteau R, Scott AI. Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem. 2001;9(9):2237–42. https://doi.org/10.1016/S0968-0896(01)00072-4.

    Article  CAS  Google Scholar 

  82. Huffaker A, Pearce G, Veyrat N, Erb M, Turlings TCJ, Sartor R, Shen ZX, Briggs SP, Vaughan MM, Alborn HT, Teal PEA, Schmelz EA. Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. P Natl Acad Sci USA. 2013;110(14):5707–12. https://doi.org/10.1073/pnas.1214668110.

    Article  CAS  Google Scholar 

  83. Hutchison CA, Chuang R-Y, Noskov VN, Assad-Garcia N, Deerinck TJ, Ellisman MH, Gill J, Kannan K, Karas BJ, Ma L. Design and synthesis of a minimal bacterial genome. Science. 2016;351(6280):aad6253. https://doi.org/10.1126/science.aad6253.

    Article  CAS  Google Scholar 

  84. Itokawa H, Lee K-H. Taxus: the genus taxus. In: Medicinal and aromatic plants-industrial profiles, vol. 32. London/New York: Taylor & Francis; 2003.

    Google Scholar 

  85. Jennewein S, Rithner CD, Williams RM, Croteau RB. Taxol biosynthesis: Taxane 13 alpha-hydroxylase is a cytochrome P450-dependent monooxygenase. P Natl Acad Sci USA. 2001;98(24):13595–600. https://doi.org/10.1073/pnas.251539398.

    Article  CAS  Google Scholar 

  86. Jennewein S, Rithner CD, Williams RM, Croteau R. Taxoid metabolism: Taxoid 14 beta-hydroxylase is a cytochrome P450-dependent monooxygenase. Arch Biochem Biophys. 2003;413(2):262–70. https://doi.org/10.1016/S0003-9861(03)00090-0.

    Article  CAS  Google Scholar 

  87. Jennewein S, Long RM, Williams RM, Croteau R. Cytochrome P450 taxadiene 5 alpha-hydroxylase, a mechanistically unusual monooxygenase catalyzing the first oxygenation step of taxol biosynthesis. Chem Biol. 2004;11(3):379–87. https://doi.org/10.1016/j.chembiol.2004.02.022.

    Article  CAS  Google Scholar 

  88. Jennewein S, Wildung MR, Chau M, Walker K, Croteau R. Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in taxol biosynthesis. P Natl Acad Sci USA. 2004;101(24):9149–54. https://doi.org/10.1073/pnas.0403009101.

    Article  CAS  Google Scholar 

  89. Jennewein S, Park H, DeJong JM, Long RM, Bollon AP, Croteau RB. Coexpression in yeast of Taxus cytochrome p450 reductase with cytochrorne P450 oxygenases involved in taxol biosynthesis. Biotechnol Bioeng. 2005;89(5):588–98. https://doi.org/10.1002/bit.20390.

    Article  CAS  Google Scholar 

  90. Jensen K, Møller BL. Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry. 2010;71(2):132–41. https://doi.org/10.1016/j.phytochem.2009.10.017.

    Article  CAS  Google Scholar 

  91. Kaul BL. The effect of some treatment conditions on the radiomimetic activity of 1-methyl-3-nitro-1-nitrosoguanidine in plants. Mutat Res. 1969;7(1):43–9.

    Article  CAS  Google Scholar 

  92. Ketchum RE, Gibson DM, Croteau RB, Shuler ML. The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol Bioeng. 1999;62(1):97–105. https://doi.org/10.1002/(SICI)1097-0290(19990105)62:1<97::AID-BIT11>3.0.CO;2-C.

    Article  CAS  Google Scholar 

  93. Ketchum REB, Wherland L, Croteau RB. Stable transformation and long-term maintenance of transgenic Taxus cell suspension cultures. Plant Cell Rep. 2007;26(7):1025–33. https://doi.org/10.1007/s00299-007-0323-x.

    Article  CAS  Google Scholar 

  94. Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol. 2012;12. https://doi.org/10.1186/1471-2180-12-3.

  95. Khosroushahi AY, Valizadeh M, Ghasempour A, Khosrowshahli M, Naghdibadi H, Dadpour MR, Omidi Y. Improved taxol production by combination of inducing factors in suspension cell culture of Taxus baccata. Cell Biol Int. 2006;30(3):262–9. https://doi.org/10.1016/j.cellbi.2005.11.004.

    Article  CAS  Google Scholar 

  96. Kim BJ, Gibson DM, Shuler ML. Effect of subculture and elicitation on instability of taxol production in Taxus sp suspension cultures. Biotechnol Prog. 2004;20(6):1666–73. https://doi.org/10.1021/bp034274c.

    Article  CAS  Google Scholar 

  97. Kim BJ, Gibson DM, Shuler ML. Effect of the plant peptide regulator, phytosulfokine-alpha on the growth and taxol production from Taxus sp suspension cultures. Biotechnol Bioeng. 2006;95(1):8–14. https://doi.org/10.1002/bit.20934.

    Article  CAS  Google Scholar 

  98. Kim JH, Yun JH, Hwang YS, Byun SY, Kim DI. Production of taxol and related Taxanes in Taxus brevifolia cell cultures: effect of sugar. Biotechnol Lett. 1995;17(1):101–6. https://doi.org/10.1007/Bf00134204.

    Article  CAS  Google Scholar 

  99. Kingston DG. Taxol and its analogs. In: Cragg GM, Kingston DG, Newman DJ, editors. Anticancer agents from natural products. Boca Raton: CRC press; 2011. p. 123–76.

    Chapter  Google Scholar 

  100. Koksal M, Jin YH, Coates RM, Croteau R, Christianson DW. Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature. 2011;469(7328):116–U138. https://doi.org/10.1038/nature09628.

    Article  CAS  Google Scholar 

  101. Kolewe ME, Henson MA, Roberts SC. Analysis of aggregate size as a process variable affecting paclitaxel accumulation in taxus suspension cultures. Biotechnol Prog. 2011;27(5):1365–72. https://doi.org/10.1002/btpr.655.

    Article  CAS  Google Scholar 

  102. Koshino H, Terada S-I, Yoshihara T, Sakamura S, Shimanuki T, Sato T, Tajimi A. Three phenolic acid derivatives from stromata of Epichloe typhina on Phleum pratense. Phytochemistry. 1988;27(5):1333–8. https://doi.org/10.1016/0031-9422(88)80188-2.

    Article  CAS  Google Scholar 

  103. Kovacs K, Zhang L, Linforth RST, Whittaker B, Hayes CJ, Fray RG. Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5),11(12)-diene] in transgenic tomato fruit. Transgenic Res. 2007;16(1):121–6. https://doi.org/10.1007/s11248-006-9039-x.

    Article  CAS  Google Scholar 

  104. Kusari S, Singh S, Jayabaskaran C. Rethinking production of taxol (R) (paclitaxel) using endophyte biotechnology. Trends Biotechnol. 2014;32(6):304–11. https://doi.org/10.1016/j.tibtech.2014.03.011.

    Article  CAS  Google Scholar 

  105. Larkin PJ, Scowcroft WR. Somaclonal variationa – novel source of variability from cell cultures for plant improvement. Theor Appl Genet. 1981;60(4):197–214. https://doi.org/10.1007/BF02342540.

    Article  CAS  Google Scholar 

  106. Lavelle F, Gueritte-Voegelein F, Guenard D. Taxotere: from yew's needles to clinical practice. Bull Cancer. 1993;80(4):326–38.

    CAS  Google Scholar 

  107. Leavell MD, McPhee DJ, Paddon CJ. Developing fermentative terpenoid production for commercial usage. Curr Opin Biotechnol. 2016;37:114–9. https://doi.org/10.1016/j.copbio.2015.10.007.

    Article  CAS  Google Scholar 

  108. Lenka SK, Nims NE, Vongpaseuth K, Boshar RA, Roberts SC, Walker EL. Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4. Front Plant Sci. 2015;6. https://doi.org/10.3389/fpls.2015.00115.

  109. Leonard E, Koffas MA. Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Appl Environ Microbiol. 2007;73(22):7246–51. https://doi.org/10.1128/AEM.01411-07.

    Article  CAS  Google Scholar 

  110. Li F-L, Ma X-J, X-L H, Hoffman A, Dai J-G, D-Y Q. Antisense-induced suppression of taxoid 14β-hydroxylase gene expression in transgenic Taxus× media cells. Afr J Biotechnol. 2013;10(44):8720–8. https://doi.org/10.5897/AJB11.319.

    Google Scholar 

  111. Li JY, Strobel G, Sidhu R, Hess WM, Ford EJ. Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiol-UK. 1996;142:2223–6. https://doi.org/10.1099/13500872-142-8-2223.

    Article  CAS  Google Scholar 

  112. Li MY, Jiang FS, Yu XL, Miao ZQ. Engineering isoprenoid biosynthesis in Artemisia annua L. for the production of Taxadiene: a key intermediate of taxol. Biomed Res Int. 2015. https://doi.org/10.1155/2015/504932.

  113. Li S, Zhang P, Zhang M, Fu C, Yu L. Functional analysis of a WRKY transcription factor involved in transcriptional activation of the DBAT gene in Taxus chinensis. Plant Biol. 2013;15(1):19–26. https://doi.org/10.1111/j.1438-8677.2012.00611.

    Article  CAS  Google Scholar 

  114. Li ST, CH F, Zhang M, Zhang Y, Xie S, LJ Y. Enhancing taxol biosynthesis by overexpressing a 9-cis-epoxycarotenoid dioxygenase gene in transgenic cell lines of Taxus chinensis. Plant Mol Biol Report. 2012;30(5):1125–30. https://doi.org/10.1007/s11105-012-0436-4.

    Article  CAS  Google Scholar 

  115. Li YF, Lin ZQ, Huang C, Zhang Y, Wang ZW, Tang YJ, Chen T, Zhao XM. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metab Eng. 2015;31:13–21. https://doi.org/10.1016/j.ymben.2015.06.006.

    Article  CAS  Google Scholar 

  116. Lin XY, Hezari M, Koepp AE, Floss HG, Croteau R. Mechanism of taxadiene synthase, a diterpene cyclase that catalyzes the first step of taxol biosynthesis in Pacific yew. Biochemistry-US. 1996;35(9):2968–77. https://doi.org/10.1021/bi9526239.

    Article  CAS  Google Scholar 

  117. Linden JC, Phisalaphong M. Oligosaccharides potentiate methyl jasmonate-induced production of paclitaxel in Taxus canadensis. Plant Sci. 2000;158(1–2):41–51. https://doi.org/10.1016/S0168-9452(00)00306-X.

    Article  CAS  Google Scholar 

  118. Liu KH, Ding XW, Deng BW, Chen WQ. Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol. 2009;36(9):1171–7. https://doi.org/10.1007/s10295-009-0598-8.

    Article  CAS  Google Scholar 

  119. Long RM, Croteau R. Preliminary assessment of the C13-side chain 2′-hydroxylase involved in taxol biosynthesis. Biochem Bioph Res Commun. 2005;338(1):410–7. https://doi.org/10.1016/j.bbrc.2005.08.119.

    Article  CAS  Google Scholar 

  120. Long RM, Lagisetti C, Coates RM, Croteau RB. Specificity of the N-benzoyl transferase responsible for the last step of taxol biosynthesis. Arch Biochem Biophys. 2008;477(2):384–9. https://doi.org/10.1016/j.abb.2008.06.021.

    Article  CAS  Google Scholar 

  121. Malik S, Cusido RM, Mirjalili MH, Moyano E, Palazon J, Bonfill M. Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem. 2011;46(1):23–34. https://doi.org/10.1016/j.procbio.2010.09.004.

    Article  CAS  Google Scholar 

  122. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003;21(7):796–802. https://doi.org/10.1038/nbt833.

    Article  CAS  Google Scholar 

  123. Martínez-Márquez A, Morante-Carriel J, Ramírez-Estrada K, Cusido R, Sellés-Marchart S, Palazon J, Pedreño MA, Bru-Martínez R. A reliable protocol for the stable transformation of non-embryogenic cells cultures of grapevine (Vitis vinifera L.) and Taxus x media. J Biol Methods. 2015;2(2):e21.

    Article  Google Scholar 

  124. Mathews HV, Reddy VS, Lammers AH. Taxus transformation transformed cells, and related compositions and methods. 2011. U.S. Patent No. 8,053,637.

    Google Scholar 

  125. Matsubayashi Y. Recent progress in research on small post-translationally modified peptide signals in plants. Genes Cells. 2012;17(1):1–10. https://doi.org/10.1111/j.1365-2443.2011.01569.x.

    Article  CAS  Google Scholar 

  126. McLellan CA, Turbyville TJ, Wijeratne EMK, Kerschen A, Vierling E, Queitsch C, Whitesell L, Gunatilaka AAL. A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol. 2007;145(1):174–82. https://doi.org/10.1104/pp.107.101808.

    Article  CAS  Google Scholar 

  127. Mirjalili N, Linden JC. Gas phase composition effects on suspension cultures of Taxus cuspidata. Biotechnol Bioeng. 1995;48(2):123–32. https://doi.org/10.1002/bit.260480206.

    Article  CAS  Google Scholar 

  128. Mirjalili N, Linden JC. Methyl jasmonate induced production of taxol in suspension cultures of Taxus cuspidata: ethylene interaction and induction models. Biotechnol Prog. 1996;12(1):110–8. https://doi.org/10.1021/bp9500831.

    Article  CAS  Google Scholar 

  129. Moon WJ, Yoo BS, Kim DI, Byun SY. Elicitation kinetics of taxane production in suspension cultures of Taxus baccata Pendula. Biotechnol Tech. 1998;12(1):79–81. https://doi.org/10.1023/A:1008867828951.

    Article  CAS  Google Scholar 

  130. Morais S, Pandey PC, Chen W, Mulchandani A. A novel bioassay for screening and quantification of taxanes. Chem Commun. 2003;10:1188–9.

    Article  CAS  Google Scholar 

  131. Morris P, Rudge K, Cresswell R, Fowler M. Regulation of product synthesis in cell cultures of Catharanthus roseus. V. Long-term maintenance of cells on a production medium. Plant Cell Tissue Organ Cult. 1989;17(2–3):79–90. https://doi.org/10.1007/BF00046853.

    Article  CAS  Google Scholar 

  132. Mountford PG. The taxol® story–development ofa green synthesis via plant cell fermentation. Green Chem Pharmaceut Ind. 2010. https://doi.org/10.1002/9783527629688.ch7.

  133. Mousa WK, Raizada MN. The diversity of ant microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol. 2013;4. https://doi.org/10.3389/fmicb.2013.00065.

  134. Naik PM, Al-Khayri JM. Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. In: Shanker AK and Shankar C (eds). Abiotic and biotic stress in plants - recent advances and future perspectives. InTech, Croatia. 2016: 247–77. https://doi.org/10.5772/61442.

  135. Nicolaou K, Yang Z, Liu J, Ueno H, Nantermet P, Guy R, Claiborne C, Renaud J, Couladouros E, Paulvannan K. Total synthesis of taxol. Nature. 1994;367(6464):630–4. https://doi.org/10.1038/367630a0.

    Article  CAS  Google Scholar 

  136. Nicolaou KC, Dai WM, Guy RK. Chemistry and biology of taxol. Angew Chem Int Ed Engl. 1994;33(1):15–44. https://doi.org/10.1002/anie.199400151.

    Article  Google Scholar 

  137. Nims E, Dubois CP, Roberts SC, Walker EL. Expression profiling of genes involved in paclitaxel biosynthesis for targeted metabolic engineering. Metab Eng. 2006;8(5):385–94. https://doi.org/10.1016/j.ymben.2006.04.001.

    Article  CAS  Google Scholar 

  138. Nour-Eldin HH, Halkier BA. The emerging field of transport engineering of plant specialized metabolites. Curr Opin Biotechnol. 2013;24(2):263–70. https://doi.org/10.1016/j.copbio.2012.09.006.

    Article  CAS  Google Scholar 

  139. Ogden L. Taxus (yews) – a highly toxic plant. Vet Hum Toxicol. 1988;30(6):563–4.

    CAS  Google Scholar 

  140. Onrubia M, Cusido RM, Ramirez K, Hernandez-Vazquez L, Moyano E, Bonfill M, Palazon J. Bioprocessing of plant in vitro Systems for the Mass Production of pharmaceutically important metabolites: paclitaxel and its derivatives. Curr Med Chem. 2013;20(7):880–91. https://doi.org/10.2174/092986713805219064.

    CAS  Google Scholar 

  141. Onrubia M, Moyano E, Bonfill M, Cusido RM, Goossens A, Palazon J. Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate. J Plant Physiol. 2013;170(2):211–9. https://doi.org/10.1016/j.jplph.2012.09.004.

    Article  CAS  Google Scholar 

  142. Onrubia M, Pollier J, Vanden Bossche R, Goethals M, Gevaert K, Moyano E, Vidal-Limon H, Cusido RM, Palazon J, Goossens A. Taximin, a conserved plant-specific peptide is involved in the modulation of plant-specialized metabolism. Plant Biotechnol J. 2014;12(7):971–83. https://doi.org/10.1111/pbi.12205.

    Article  CAS  Google Scholar 

  143. Osuna L, Tapia N, Cusido R, Palazon J, Bonfill M, Zamilpa A, Lopez-Upton J, Cruz-Sosa F. Taxane production induced by methyl jasmonate in free and immobilized cell cultures of Mexican yew (Taxus globosa Schltdl). Acta Physiol Plant. 2015;37(10). https://doi.org/10.1007/s11738-015-1947-z.

  144. Paddon CJ, Westfall PJ, Pitera D, Benjamin K, Fisher K, McPhee D, Leavell M, Tai A, Main A, Eng D. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature. 2013;496(7446):528–32. https://doi.org/10.1038/nature12051.

    Article  CAS  Google Scholar 

  145. Paddon CJ, Keasling JD. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol. 2014;12(5):355–67. https://doi.org/10.1038/nrmicro3240.

    Article  CAS  Google Scholar 

  146. Pandey RP, Parajuli P, Koffas MA, Sohng JK. Microbial production of natural and non-natural flavonoids: pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv. 2016. https://doi.org/10.1016/j.biotechadv.2016.02.012.

  147. Pandi M, Kumaran RS, Choi YK, Kim HJ, Muthumary J. Isolation and detection of taxol, an anticancer drug produced from Lasiodiplodia theobromae, an endophytic fungus of the medicinal plant Morinda citrifolia. Afr J Biotechnol. 2011;10(8):1428–35. https://doi.org/10.5897/AJB10.950.

    CAS  Google Scholar 

  148. Parr AJ, Payne J, Eagles J, Chapman BT, Robins RJ, Rhodes MJC. Variation in tropane alkaloid accumulation within the Solanaceae and strategies for its exploitation. Phytochemistry. 1990;29(8):2545–50. https://doi.org/10.1016/0031-9422(90)85185-I.

    Article  CAS  Google Scholar 

  149. Paungfoo-Lonhienne C, Rentsch D, Robatzek S, Webb RI, Sagulenko E, Nasholm T, Schmidt S, Lonhienne TGA. Turning the table: plants consume microbes as a source of nutrients. PLoS One. 2010;5(7). https://doi.org/10.1371/journal.pone.0011915.

  150. The Plant List Version 1.1. Published on the Internet. http://www.theplantlist.org/. 2013. Accessed 9 Mar 2016.

  151. Pre M, Atallah M, Champion A, De Vos M, Pieterse CMJ, Memelink J. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol. 2008;147(3):1347–57. https://doi.org/10.1104/pp.108.117523.

    Article  CAS  Google Scholar 

  152. Priti V, Ramesha BT, Singh S, Ravikanth G, Ganeshaiah KN, Suryanarayanan TS, Shaanker RU. How promising are endophytic fungi as alternative sources of plant secondary metabolites? CURRENT SCIENCE. 2009;7(4):477.

    Google Scholar 

  153. Prosser GA, Larrouy-Maumus G, de Carvalho LPS. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. EMBO Rep. 2014;15(6):657–69. 10.15252/embr.201338283.

    CAS  Google Scholar 

  154. Ramirez-Estrada K, Osuna L, Moyano E, Bonfill M, Tapia N, Cusido RM, Palazon J. Changes in gene transcription and taxane production in elicited cell cultures of Taxus x media and Taxus globosa. Phytochemistry. 2015;117:174–84. https://doi.org/10.1016/j.phytochem.2015.06.013.

    Article  CAS  Google Scholar 

  155. Ramirez-Estrada K, Altabella T, Onrubia M, Moyano E, Notredame C, Osuna L, Bossche RV, Goossens A, Cusido RM, Palazon J. Transcript profiling of jasmonate-elicited Taxus cells reveals a beta-phenylalanine-CoA ligase. Plant Biotechnol J. 2016;14(1):85–96. https://doi.org/10.1111/pbi.12359.

    Article  CAS  Google Scholar 

  156. Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusido RM, Palazon J. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules. 2016;21(2). https://doi.org/10.3390/molecules21020182.

  157. Rao S, He L, Chakravarty S, Ojima I, Orr GA, Horwitz SB. Characterization of the taxol binding site on the microtubule identification of Arg282 in β-tubulin as the site of photoincorporation of a 7-benzophenone analogue of taxol. J Biol Chem. 1999;274(53):37990–4. https://doi.org/10.1074/jbc.274.53.37990.

    Article  CAS  Google Scholar 

  158. Raunkiær C, Gilvert-Carter H, Fausbøll A, Tansley AG. The life forms of plants and statistical plant geography. Oxford: The Clarendon press; 1934.

    Google Scholar 

  159. Rikhari HC, Palni LMS, Sharma S, Nandi SK. Himalayan yew: stand structure, canopy damage, regeneration and conservation strategy. Environ Conserv. 1998;25(4):334–41. https://doi.org/10.1017/S0376892998000411.

    Article  Google Scholar 

  160. Roche Holdings Ltd. Roche Finance Report 2016. 2016. Retrieved from http://www.roche.com/dam/jcr:6ddcec16-c658-48b2-82b5-4ed426c14ac8/en/fb16e.pdf

  161. Rodriguez R, White J Jr, Arnold A, Redman R. Fungal endophytes: diversity and functional roles. New Phytol. 2009;182(2):314–30. https://doi.org/10.1111/j.1469-8137.2009.02773.

    Article  CAS  Google Scholar 

  162. Rohr R. Production de cals par les gamétophytes mâles de Taxus baccata L. cultivés sur un milieu artificiel. Etude en microscopie photonique et électronique. Caryologia. 1973;25(sup1):177–89. https://doi.org/10.1080/00087114.1973.10797122.

    Article  Google Scholar 

  163. Rontein D, Onillon S, Herbette G, Lesot A, Werck-Reichhart D, Sallaud C, Tissier A. CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5),11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane. J Biol Chem. 2008;283(10):6067–75. https://doi.org/10.1074/jbc.M708950200.

    Article  CAS  Google Scholar 

  164. Sabater-Jara AB, Onrubia M, Moyano E, Bonfill M, Palazon J, Pedreno MA, Cusido RM. Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in Taxus x media cell cultures. Plant Biotechnol J. 2014;12(8):1075–84. https://doi.org/10.1111/pbi.12214.

    Article  CAS  Google Scholar 

  165. Sanofi. Sanofi annual report on form 20-F 2016. 2016. Retrieved from http://en.sanofi.com/Images/49288_20-F_2016.pdf

  166. Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. P Natl Acad Sci-Biol. 1980;77(3):1561–5. https://doi.org/10.1073/pnas.77.3.1561.

    Article  CAS  Google Scholar 

  167. Schoendorf A, Rithner CD, Williams RM, Croteau RB. Molecular cloning of a cytochrome P450 taxane 10 beta-hydroxylase cDNA from Taxus and functional expression in yeast. P Natl Acad Sci USA. 2001;98(4):1501–6. https://doi.org/10.1073/pnas.98.4.1501.

    Article  CAS  Google Scholar 

  168. Schripsema J, Verpoorte R. Search for factors related to the indole alkaloid production in cell suspension cultures of Tabernaemontana divaricata. Planta Med. 1992;58(3):245–9. https://doi.org/10.1055/s-2006-961445.

    Article  CAS  Google Scholar 

  169. Schuler MA, Werck-Reichhart D. Functional genomics of P450s. Annu Rev Plant Biol. 2003;54:629–67. https://doi.org/10.1146/annurev.arplant.54.031902.134840.

    Article  CAS  Google Scholar 

  170. Schulz B. Mutualistic interactions with fungal root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN, editors. Microbial root endophytes. Berlin/Heidelberg: Springer; 2006. p. 261–79. https://doi.org/10.1007/3-540-33526-9_15.

    Chapter  Google Scholar 

  171. Shwab EK, Keller NP. Regulation of secondary metabolite production in filamentous ascomycetes. Mycol Res. 2008;112(2):225–30.

    Google Scholar 

  172. Soliman SS, Trobacher CP, Tsao R, Greenwood JS, Raizada MN. A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant. BMC Plant Biol. 2013;13(1):1. https://doi.org/10.1186/1471-2229-13-93.

    Article  CAS  Google Scholar 

  173. Soliman SSM, Greenwood JS, Bombarely A, Mueller LA, Tsao R, Mosser DD, Raizada MN. An Endophyte constructs fungicide-containing extracellular barriers for its host plant. Curr Biol. 2015;25(19):2570–6. https://doi.org/10.1016/j.cub.2015.08.027.

    Article  CAS  Google Scholar 

  174. Souza JJ, Vieira IJ, Rodrigues-Filho E, Braz-Filho R. Terpenoids from endophytic fungi. Molecules. 2011;16(12):10604–18. https://doi.org/10.3390/molecules161210604.

    Article  Google Scholar 

  175. Srinivasan V, Pestchanker L, Moser S, Hirasuna TJ, Taticek RA, Shuler ML. Taxol production in bioreactors: kinetics of biomass accumulation, nutrient uptake, and taxol production by cell suspensions of Taxus baccata. Biotechnol Bioeng. 1995;47(6):666–76. https://doi.org/10.1002/bit.260470607.

    Article  CAS  Google Scholar 

  176. Staniek A, Woerdenbag HJ, Kayser O. Taxomyces andreanae: a presumed paclitaxel producer demystified? Planta Med. 2009;75(15):1561–6. https://doi.org/10.1055/s-0029-1186181.

    Article  CAS  Google Scholar 

  177. Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science. 1993;260(5105):214–6. https://doi.org/10.1126/science.8097061.

    Article  CAS  Google Scholar 

  178. Stierle A, Stierle D. Bioactive compounds from four endophytic Penicillium sp. of a northwest Pacific yew tree. Stud Nat Prod Chem. 2000;24:933–77. https://doi.org/10.1016/S1572-5995(00)80058-7.

    Article  CAS  Google Scholar 

  179. Stovicek V, Borodina I, Forster J. CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metabol Eng Commun. 2015;2:13–22. https://doi.org/10.1016/j.meteno.2015.03.001.

    Article  Google Scholar 

  180. Strobel G, Stierle A, Hess WM. The stimulation of taxol production in Taxus brevifolia by various growth-retardants. Plant Sci. 1994;101(2):115–24. https://doi.org/10.1016/0168-9452(94)90247-X.

    Article  CAS  Google Scholar 

  181. Strobel GA. Endophytes as sources of bioactive products. Microbes Infect. 2003;5(6):535–44. https://doi.org/10.1016/S1286-4579(03)00073-X.

    Article  CAS  Google Scholar 

  182. Sung ZR. Mutagenesis of cultured plant cells. Genetics. 1976;84(1):51–7.

    CAS  Google Scholar 

  183. Tabata, H. (2004). Paclitaxel production by plant-cell-culture technology. In Biomanufacturing (pp. 1-23). Springer Berlin Heidelberg.

    Google Scholar 

  184. Tang ZM, Salamanca-Pinzon SG, ZL W, Xiao Y, Guengerich FP. Human cytochrome P450 4F11: heterologous expression in bacteria, purification, and characterization of catalytic function. Arch Biochem Biophys. 2010;494(1):86–93. https://doi.org/10.1016/j.abb.2009.11.017.

    Article  CAS  Google Scholar 

  185. Thomas, P. Taxus brevifolia. The IUCN red list of threatened species 2013. 2013. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T34041A2841142.en. Accessed 29 Apr 2016.

  186. Thomas P, Sekhar AC. Live cell imaging reveals extensive intracellular cytoplasmic colonization of banana by normally non-cultivable endophytic bacteria. Aob Plants. 2014;6. https://doi.org/10.1093/aobpla/plu002.

  187. Valderrama-Rincon JD, Fisher AC, Merritt JH, Fan YY, Reading CA, Chhiba K, Heiss C, Azadi P, Aebi M, DeLisa MP. An engineered eukaryotic protein glycosylation pathway in Escherichia coli. Nat Chem Biol. 2012;8(5):434–6. https://doi.org/10.1038/Nchembio.921.

    Article  CAS  Google Scholar 

  188. Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Korbes AP, Memelink J, Ritsema T, Van Wees SCM, Pieterse CMJ. Salicylic acid suppresses Jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell. 2013;25(2):744–61. https://doi.org/10.1105/tpc.112.108548.

    Article  CAS  Google Scholar 

  189. Van Dien S. From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr Opin Biotechnol. 2013;24(6):1061–8. https://doi.org/10.1016/j.copbio.2013.03.002.

    Article  CAS  Google Scholar 

  190. Vidensek N, Lim P, Campbell A, Carlson C. Taxol content in bark, wood, root, leaf, twig, and seedling from several Taxus species. J Nat Prod. 1990;53(6):1609–10. https://doi.org/10.1021/np50072a039.

    Article  CAS  Google Scholar 

  191. Vongpaseuth K, Nims E, Amand MS, Walker EL, Roberts SC. Development of a particle bombardment-mediated transient transformation system for Taxus spp. cells in culture. Biotechnol Prog. 2007;23(5):1180–5. https://doi.org/10.1021/bp0700307.

    CAS  Google Scholar 

  192. Vongpaseuth K, Roberts SC. Advancements in the understanding of paclitaxel metabolism in tissue culture. Curr Pharm Biotechnol. 2007;8(4):219–36. https://doi.org/10.2174/138920107781387393.

    Article  CAS  Google Scholar 

  193. Walker K, Croteau R. Taxol biosynthesis: molecular cloning of a benzoyl-CoA : taxane 2 alpha-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli. P Natl Acad Sci USA. 2000a;97(25):13591–6. https://doi.org/10.1073/pnas.250491997.

    Article  CAS  Google Scholar 

  194. Walker K, Croteau R. Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. P Natl Acad Sci USA. 2000b;97(2):583–7. https://doi.org/10.1073/pnas.97.2.583.

    Article  CAS  Google Scholar 

  195. Walker K, Schoendorf A, Croteau R. Molecular cloning of a taxa-4(20),11(12)-dien-5 alpha-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Arch Biochem Biophys. 2000;374(2):371–80. https://doi.org/10.1006/abbi.1999.1609.

    Article  CAS  Google Scholar 

  196. Walker K, Fujisaki S, Long R, Croteau R. Molecular cloning and heterologous expression of the C-13 phenylpropanoid side chain-CoA acyltransferase that functions in taxol biosynthesis. P Natl Acad Sci USA. 2002;99(20):12715–20. https://doi.org/10.1073/pnas.192463699.

    Article  CAS  Google Scholar 

  197. Walker K, Long R, Croteau R. The final acylation step in taxol biosynthesis: cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus. P Natl Acad Sci USA. 2002;99(14):9166–71. https://doi.org/10.1073/pnas.082115799.

    Article  CAS  Google Scholar 

  198. Walker KD, Klettke K, Akiyama T, Croteau R. Cloning, heterologous expression, and characterization of a phenylalanine aminomutase involved in taxol biosynthesis. J Biol Chem. 2004;279(52):53947–54. https://doi.org/10.1074/jbc.M411215200.

    Article  CAS  Google Scholar 

  199. Wall ME, Wani MC. Camptothecin and taxol: discovery to clinic – thirteenth Bruce F. Cain Memorial Award Lecture. Cancer Res. 1995;55(4):753–60.

    CAS  Google Scholar 

  200. Wang CG, JY W, Mei XG. Enhanced taxol production and release in Taxus chinensis cell suspension cultures with selected organic solvents and sucrose feeding. Biotechnol Prog. 2001;17(1):89–94. https://doi.org/10.1021/bp0001359.

    Article  CAS  Google Scholar 

  201. Wang ZY, Zhong JJ. Repeated elicitation enhances taxane production in suspension cultures of Taxus chinensis in bioreactors. Biotechnol Lett. 2002;24(6):445–8. https://doi.org/10.1023/A:1014549008516.

    Article  Google Scholar 

  202. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971;93(9):2325–7. https://doi.org/10.1021/ja00738a045.

    Article  CAS  Google Scholar 

  203. Wani MC, Horwitz SB. Nature as a remarkable chemist: a personal story of the discovery and development of taxol. Anti-Cancer Drug. 2014;25(5):482–7. https://doi.org/10.1097/Cad.0000000000000063.

    Article  CAS  Google Scholar 

  204. Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules. 2012;17(9):10754–73. https://doi.org/10.3390/molecules170910754.

    Article  CAS  Google Scholar 

  205. Wheeler AL, Long RM, Ketchum REB, Rithner CD, Williams RM, Croteau R. Taxol biosynthesis: differential transformations of taxadien-5 alpha-ol and its acetate ester by cytochrome P450 hydroxylases from Taxus suspension cells. Arch Biochem Biophys. 2001;390(2):265–78. https://doi.org/10.1006/abbi.2001.2377.

    Article  CAS  Google Scholar 

  206. White JF, Torres MS, Somu MP, Johnson H, Irizarry I, Chen Q, Zhang N, Walsh E, Tadych M, Bergen M. Hydrogen peroxide staining to visualize intracellular bacterial infections of seedling root cells. Microsc Res Tech. 2014;77(8):566–73. https://doi.org/10.1002/jemt.22375.

    Article  CAS  Google Scholar 

  207. Whited GM, Feher FJ, Benko DA, Cervin MA, Chotani GK, McAuliffe JC, LaDuca RJ, Ben-Shoshan EA, Sanford KJ. Technology update: development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol. 2010;6(3):152–63. https://doi.org/10.1089/ind.2010.6.152.

    Article  CAS  Google Scholar 

  208. Wilding B, Vesela AB, Perry JJB, Black GW, Zhang M, Martinkova L, Klempier N. An investigation of nitrile transforming enzymes in the chemo-enzymatic synthesis of the taxol sidechain. Org Biomol Chem. 2015;13(28):7803–12. https://doi.org/10.1039/c5ob01191d.

    Article  CAS  Google Scholar 

  209. Wildung MR, Croteau R. A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J Biol Chem. 1996;271(16):9201–4. https://doi.org/10.1074/jbc.271.16.9201.

    Article  CAS  Google Scholar 

  210. Williams DC, Wildung MR, Jin AQ, Dalal D, Oliver JS, Coates RM, Croteau R. Heterologous expression and characterization of a “Pseudomature” form of taxadiene synthase involved in paclitaxel (taxol) biosynthesis and evaluation of a potential intermediate and inhibitors of the multistep diterpene cyclization reaction. Arch Biochem Biophys. 2000;379(1):137–46. https://doi.org/10.1006/abbi.2000.1865.

    Article  CAS  Google Scholar 

  211. Wilson D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos. 1995:274–6. https://doi.org/10.2307/3545919.

  212. Wilson SA, Roberts SC. Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J. 2012;10(3):249–68. https://doi.org/10.1111/j.1467-7652.2011.00664.x.

    Article  CAS  Google Scholar 

  213. ZL W, Yuan YJ, Liu JX, Xuan HY, ZD H, Sun AC, CX H. Study on enhanced production of taxol from Taxus chinensis var. mairei in biphasic-liquid culture. Acta Bot Sin. 1999;41(10):1108–13.

    Google Scholar 

  214. Yadav VG. Unraveling the multispecificity and catalytic promiscuity of taxadiene monooxygenase. J Mol Catal B-Enzym. 2014;110:154–64. https://doi.org/10.1016/j.molcatb.2014.10,004.

    Article  CAS  Google Scholar 

  215. Yanagi M, Ninomiya R, Ueda Y, Furuta T, Yamada T, Sunazuka T, Kawabata T. Organocatalytic site-selective acylation of 10-deacetylbaccatin III. Chem Pharm Bull. 2016. https://doi.org/10.1248/cpb.c16-00037.

  216. Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Xie F, Walker KD, Parks JW, Bruce R. Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics. 2014;15(1):1. https://doi.org/10.1186/1471-2164-15-69.

    Article  Google Scholar 

  217. Yarwood C. Ampelomyces quisqualis on clover mildew. Phytopathology. 1932;22:31.

    Google Scholar 

  218. Yuan L, Grotewold E. Metabolic engineering to enhance the value of plants as green factories. Metab Eng. 2015;27:83–91. https://doi.org/10.1016/j.ymben.2014.11.005.

    Article  CAS  Google Scholar 

  219. Yukimune Y, Tabata H, Higashi Y, Hara Y. Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol. 1996;14(9):1129–32. https://doi.org/10.1038/nbt0996-1129.

    Article  CAS  Google Scholar 

  220. Zhang JF, Gong S, Guo ZG. Effects of different elicitors on 10-deacetylbaccatin III-10-O-acetyltransferase activity and cytochrome P450 monooxygenase content in suspension cultures of Taxus cuspidata cells. Cell Biol Int Rep. 2011;18(1):7–13. https://doi.org/10.1042/CBR20110001.

    Article  Google Scholar 

  221. Zhang M, Li ST, Nie L, Chen QP, XP X, LJ Y, CH F. Two jasmonate-responsive factors, TcERF12 and TcERF15, respectively act as repressor and activator of tasy gene of taxol biosynthesis in Taxus chinensis. Plant Mol Biol. 2015;89(4–5):463–73. https://doi.org/10.1007/s11103-015-0382-2.

    Article  CAS  Google Scholar 

  222. Zhang P, Zhou P-P, L-J Y. An endophytic taxol-producing fungus from Taxus x media, Aspergillus candidus MD3. FEMS Microbiol Lett. 2009;293(2):155–9. https://doi.org/10.1111/j.1574-6968.2009.01481.x.

    Article  CAS  Google Scholar 

  223. Zhang P, Li S-T, Liu T-T, C-H F, Zhou P-P, Zhao C-F, L-J Y. Overexpression of a 10-deacetylbaccatin III-10 β-O-acetyltransferase gene leads to increased taxol yield in cells of Taxus chinensis. Plant Cell Tissue Organ Cult (PCTOC). 2011;106(1):63–70. https://doi.org/10.1007/s11240-010-9894-2.

    Article  CAS  Google Scholar 

  224. Zhao K, Ping W, Li Q, Hao S, Zhao L, Gao T, Zhou D. Aspergillus niger var. taxi, a new species variant of taxol-producing fungus isolated from Taxus cuspidata in China. J Appl Microbiol. 2009;107(4):1202–7. https://doi.org/10.1111/j.1365-2672.2009.04305.x.

    Article  CAS  Google Scholar 

  225. Zhou K, Qiao KJ, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol. 2015;33(4):377–U157. https://doi.org/10.1038/nbt.3095.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Richard M Twyman and Dr Birgit Orthen for assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Jennewein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McElroy, C., Jennewein, S. (2018). Taxol® Biosynthesis and Production: From Forests to Fermenters. In: Schwab, W., Lange, B., Wüst, M. (eds) Biotechnology of Natural Products. Springer, Cham. https://doi.org/10.1007/978-3-319-67903-7_7

Download citation

Publish with us

Policies and ethics