Skip to main content

New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling

  • Chapter
  • First Online:
Advances in Data Analysis with Computational Intelligence Methods

Part of the book series: Studies in Computational Intelligence ((SCI,volume 738))

Abstract

Fuzzy systems are well suited for nonlinear modeling. They can be effectively used if their structure and structure parameters are properly chosen. Moreover, it should be ensured that system rules are clear and interpretable. In this paper we propose a new algorithm for automatic learning and new interpretability criteria of fuzzy systems. Interpretability criteria are related to all aspects of those systems, not only their fuzzy sets and rules. Therefore, proposed criteria also concern parameterized triangular norms, discretization points and weights of importance from the rule base. As of the present time similar solutions have not been discussed in the literature. The proposed criteria are taken into account in the learning process, which is carried out with the use of a new learning algorithm. It was created by combining the genetic and the firework algorithms (this particular combination makes it possible to automatically choose not only system parameters but also its structure). It is an important advantage as most of the learning algorithms can only select system parameters when their structure has been specified by the designer. Proposed solutions were tested using typical simulation problems of nonlinear modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcalá, R., Ducange, P., Herrera, F., Lazzerini, B., Marcelloni, F.: A multi-objective evolutionary approach to concurrently learn rule and data base soft linguistic fuzzy rule-based systems. IEEE Trans. Fuzzy Syst. 17, 1106–1122 (2009)

    Article  Google Scholar 

  2. Alonso, J.M., Magdalena, L., Cordón, O.: Embedding HILK in a three-objective evolutionary algorithm with the aim of modeling highly interpretable fuzzy rule-based classifiers. In: 4th International Workshop on Genetic and Evolving Fuzzy Systems (GEFS2010), pp. 15–20 (2010)

    Google Scholar 

  3. Alonso, J.M.: Modeling highly interpretable fuzzy systems. Eur. Centre Soft Comput. (2010)

    Google Scholar 

  4. Alonso, J.M., Magdalena, L.: HILK++: an interpretability-guided fuzzy modeling methodology for learning readable and comprehensible fuzzy rule-based classifiers. Soft Comput. 15(10), 1959–1980 (2011)

    Article  Google Scholar 

  5. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: Proceedings of the 47th IEEE Conference on Decision and Control, pp. 4042–4048 (2008)

    Google Scholar 

  6. Amor, N.B., Salem, B., Zied, E.: Naive Bayes vs decision trees in intrusion detection systems. In: Proceedings of the 2004 ACM Symposium on Applied Computing (2004)

    Google Scholar 

  7. Andrieu, C., Doucet, A.: Particle filtering for partially observed Gaussian state space models. JR Stat. Soc. B 64(4), 827–836 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bartczuk, Ł., Przybył, A., Koprinkova-Hristova, P.: New method for non-linear correction modelling of dynamic objects with genetic programming. In: Artificial Intelligence and Soft Computing. Lecture Notes in Computer Science, vol. 9120, pp. 318–329 (2015)

    Google Scholar 

  9. Botta, A., Lazzerini, B., Marcelloni, F., Stefanescu, D.C.: Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index. Soft Comput. 13, 437–449 (2009)

    Article  Google Scholar 

  10. Box, G., Jenkins, G.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1970)

    MATH  Google Scholar 

  11. Brasileiro, Í., Santos, I., Soares, A., Rablo, R., Mazullo, F.: Ant colony optimization applied to the problem of choosing the best combination among M combinations of shortest paths in transparent optical networks. J. Artif. Intell. Soft Comput. Res. 6(4), 231–242 (2016)

    Article  Google Scholar 

  12. Brooks, T.F., Pope, D.S., Marcolini, A.M.: Airfoil self-noise and prediction. Technical report, NASA RP-1218 (1989)

    Google Scholar 

  13. Chen, K.: Global modeling of different vehicles. IEEE Veh. Technol. Mag. 4(2), 80–89 (2009)

    Article  Google Scholar 

  14. Chen, X., Abraham, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Proceedings of the 25th International Conference on Computer Aided Verification, vol. 8044, pp. 258–263 (2013)

    Google Scholar 

  15. Cpałka, K.: A new method for design and reduction of neuro-fuzzy classification systems. IEEE Trans. Neural Netw. 20, 701–714 (2009)

    Article  Google Scholar 

  16. Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. In: Nonlinear Analysis Series A: Theory, Methods and Applications, vol. 71, pp. 1659–1672. Elsevier (2009)

    Google Scholar 

  17. Cpałka, K.: Design of Interpretable Fuzzy Systems. Springer (2017)

    Google Scholar 

  18. Cpałka, K., Rebrova, O., Nowicki, R., Rutkowski, L.: On design of flexible neuro-fuzzy systems for nonlinear modelling. Int. J. Gen. Syst. 42(6), 706–720 (2013)

    Article  MATH  Google Scholar 

  19. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks IJCNN ’05, vol. 3, pp. 1764–1769 (2005)

    Google Scholar 

  20. Cyran, A.K., Kozielski, S., Peters, F.P., Stanczyk, U., Wakulicz-Deja, A.: Adaptable graphical user interfaces for player-based applications. Adv. Intell. Soft Comput. 59, 69–76 (2009)

    Google Scholar 

  21. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  22. Duch, W., Korbicz, J., Rutkowski, L., Tadeusiewicz, R.: Biocybernetics and biomedical engineering EXIT, Warszawa (2013)

    Google Scholar 

  23. Duda, P., Hayashi, Y., Jaworski, M.: On the strong convergence of the orthogonal series-type kernel regression neural networks in a non-stationary environment. In: Artificial Intelligence and Soft Computing, vol. 7267, pp. 47–54. Springer (2012)

    Google Scholar 

  24. El-Samak, A.F., Ashour, W.: Optimization of traveling salesman problem using affinity propagation clustering and genetic algorithm. J. Artif. Intell. Soft Comput. Res. 5, 239–246 (2015)

    Article  Google Scholar 

  25. Er, M.J., Duda, P.: On the weak convergence of the orthogonal series-type kernel regresion neural networks in a non-stationary environment. In: International Conference on Parallel Processing and Applied Mathematics. Lecture Notes in Computer Science, vol. 7203, pp. 90–98. Springer (2012)

    Google Scholar 

  26. Espinosa, J., Vandewalle, J.: Constructing fuzzy models with linguistic integrity from numerical data-AFRELI algorithm. IEEE Trans. Fuzzy Syst. 8, 591–600 (2000)

    Article  Google Scholar 

  27. Farahbod, F., Eftekhari, M.: Comparsion of different T-norm operators in classification problems. Int. J. Fuzzy Logic Syst. 2(3), 33–41 (2012)

    Article  Google Scholar 

  28. Fazendeiro, P., de Oliveira, J.V., Pedrycz, W.: A multiobjective design of a patient and anaesthetist-friendly neuromuscular blockade controller. IEEE Trans. Biomed. Eng. 54, 1667–1678 (2007)

    Article  Google Scholar 

  29. Fraser, A., Burnell, D.: Computer Models in Genetics. McGraw-Hill, New York (1970)

    Google Scholar 

  30. Gabryel, M., Cpałka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy systems. In: Proceedings of the I Workshop on Genetic Fuzzy Systems, Granada, vol. 119, p. 123 (2005)

    Google Scholar 

  31. Gacto, M.J., Alcalá, R., Herrera, F.: Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems. IEEE Trans. Fuzzy Syst. 18(3), 515–531 (2010)

    Article  Google Scholar 

  32. Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures. Inf. Sci. 181(20), 4340–4360 (2011)

    Article  Google Scholar 

  33. Gorzalczany, M.B., Rudzinski, F.: Accuracy vs. interpretability of fuzzy rule-based classifiers: an evolutionary approach. In: Proceedings of the 2012 International Conference on Swarm and Evolutionary Computation SIDE’12, pp. 222–230 (2012)

    Google Scholar 

  34. Guillaume, S., Charnomordic, B.: Generating an interpretable family of fuzzy partitions from data. IEEE Trans. Fuzzy Syst. 12(3), 324–335 (2004)

    Article  Google Scholar 

  35. Ibrahim, S.S., Bamatraf, M.A.: Interpretation trained neural networks based on genetic algorithms. Int. J. Artif. Intell. Appl. (IJAIA) 4(1), 13–22 (2013)

    Google Scholar 

  36. Icke, I., Rosenberg, A.: Multi-objective genetic programming for visual analytics. In: Silva, S., et al. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 322–334 (2011)

    Google Scholar 

  37. Ishibuchi, H., Nakashima, T., Murata, T.: Comparsion of the Michigan and Pittsburgh approaches to the design of fuzzy classification systems. Electron. Commun. Jpn. Part 3 80(12), 379–387 (1997)

    Google Scholar 

  38. Ishibuchi, H., Nakashima, T., Murata, T.: Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Trans. SMC B Cybern. 29, 601–618 (1999)

    Article  Google Scholar 

  39. Ishibuchi, H.: Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 13(4), 428–436 (2005)

    Article  Google Scholar 

  40. Ishibuchi, H., Nojima, Y.: Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int. J. Approximate Reasoning 44, 4–31 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jaworski, M., Er, M.J., Pietruczuk, L.: On the application of the Parzen-type kernel regression neural network and order statistics for learning in a non-stationary environment. In: International Conference on Artificial Intelligence and Soft Computing. Lecture Notes in Artificial Intelligence, vol. 7267, pp. 90–98. Springer (2012)

    Google Scholar 

  42. Kacprzyk, J.: Studies in Computational Intelligence, vol. 143 (2008)

    Google Scholar 

  43. Kaczorek, T.: A modified state variable diagram method for determination of positive realizations of linear continous-time systems with delays. Int. J. Appl. Math. Comput. Sci. 22(4), 897–905 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kar, S., Das, S., Ghosh, P.K.: Applications of neuro-fuzzy systems: a brief review and future outline. Appl. Soft Comput. 15, 243–259 (2014)

    Article  Google Scholar 

  45. Kamyar, M.: Takagi-Sugeno fuzzy modeling for process control industrial automation. In: Robotics and Artificial Intelligence (EEE8005), School of Electrical, Electronic and Computer Engineering (2008)

    Google Scholar 

  46. Kenesei, T., Abonyi, J.: Interpretable support vector machines in regression and classification-application in process engineering. Hung. J. Ind. Chem. 35, 101–108 (2007)

    Google Scholar 

  47. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers (2000)

    Google Scholar 

  48. Leekwijck, W.V., Kerre, E.E.: Defuzzification: criteria and classification. Fuzzy Sets Syst. 108(2), 159–178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Leon, M., Xiong, N.: Adapting differential evolution algorithms for continuous optimization via greedy adjustment of control parameters. J. Artif. Intell. Soft Comput. Res. 6(2), 103–118 (2016)

    Article  Google Scholar 

  50. Liu, F., Quek, C., Ng, G.S.: A novel generic hebbian ordering-based fuzzy rule base reduction approach to Mamdani neuro-fuzzy system. Neural Comput. 19, 1656–1680 (2007)

    Article  MATH  Google Scholar 

  51. Loh, W.-Y.: Classification and regression trees. Wiley Interdisc. Rev.: Data Min. Knowl. Discovery 1(1), 14–23 (2011)

    Google Scholar 

  52. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. Lect. Notes Comput. Sci. 8467, 217–232 (2014)

    Article  Google Scholar 

  53. Łapa, K., Szczypta, J., Venkatesan, R.: Aspects of structure and parameters selection of control systems using selected multi-population algorithms. Lect. Notes Comput. Sci. 9120, 247–260 (2015)

    Article  Google Scholar 

  54. Marquez, A.A, Marquez, F.A., Peregrin, A.: A multi-objective evolutionary algorithm with an interpretability improvement mechanism for linguistic fuzzy systems with adaptive defuzzification. IEEE Int. Conf. Fuzzy Syst. 1–7 (2010)

    Google Scholar 

  55. Mehran, K.: Takagi-Sugeno fuzzy modeling for process control. In: Industrial Automation, Robotics and Artificial Intelligence (EEE8005) (2008)

    Google Scholar 

  56. Mencar, C., Castellano, G., Fanelli, A.M.: Some fundamental interpretability issues in fuzzy modeling. In: Proceedings of the Joint 4th Conference of the European Society for Fuzzy Logic and Technology, pp. 100–105 (2005)

    Google Scholar 

  57. Mencar, C., Castellano, G., Fanelli, A.M.: On the role of interpretability in fuzzy data mining. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 521–537 (2007)

    Google Scholar 

  58. Mencar, C., Castiello, C., Cannone, R., Fanelli, A.M.: Interpretability assessment of fuzzy knowledge bases: a cointension based approach. Int. J. Approximate Reasoning 52(4), 501–518 (2011)

    Article  MathSciNet  Google Scholar 

  59. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)

    Article  Google Scholar 

  60. Miyajima, H., Shigei, N., Miyajima, H.: Performance comparison of hybrid electromagnetism-like mechanism algorithms with descent method. J. Artif. Intell. Soft Comput. Res. 5(4), 271–282 (2015)

    Article  MATH  Google Scholar 

  61. Musa, A.A.H., Muawia, M.A.: Analysis of the DC motor speed control using state variable transition matrix. Int. J. Sci. Res. (IJSR) 2758–2763 (2012)

    Google Scholar 

  62. Nguyen, K.P., Fujita, G., Dieu, V.N.: Cuckoo search algorithm for optimal placement and sizing of static VAR compensator in large-scale power systems. J. Artif. Intell. Soft Comput. Res. 6(2), 59–68 (2016)

    Article  Google Scholar 

  63. Patan, K., Korbicz, J.: Nonlinear model predictive control of a boiler unit: a fault tolerant control study. Int. J. Appl. Math. Comput. Sci. 22(1), 225–237 (2012)

    Article  MATH  Google Scholar 

  64. Pietruczuk, L., Duda, P., Jaworski, M.: Adaptation of decision trees for handling concept drift. In: International Conference on Artificial Intelligence and Soft Computing. Lecture Notes in Artificial Intelligence, vol. 7894, pp. 459–473. Springer (2013)

    Google Scholar 

  65. Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. Lect. Notes Artif. Intell. 697–705 (2012)

    Google Scholar 

  66. Pulkkinen, P., Koivisto, H.: A dynamically constrained multiobjective genetic fuzzy system for regression problems. IEEE Trans. Fuzzy Syst. 18(1), 161–177 (2010)

    Article  Google Scholar 

  67. Riid, A., Rustern, E.: Interpretability improvement of fuzzy systems: reducing the number of unique singletons in zeroth order Takagi-Sugeno systems. IEEE Int. Conf. Fuzzy Syst. 1–6 (2010)

    Google Scholar 

  68. Riid, A., Rustern, E.: Interpretability, interpolation and rule weights in linguistic fuzzy modeling. In: Petrosino, A., et al. (eds.) WILF 2011. LNAI, vol. 6857, pp. 91–98 (2011)

    Google Scholar 

  69. Riid, A., Rustern, E.: Adaptability, interpretability and rule weights in fuzzy rule-based systems. Inf. Sci. 257(1), 301–312 (2014)

    Article  MATH  Google Scholar 

  70. Rosfariedzah, R., Nagarajan, R., Rahim, M.: Fuzzy variable structure control with reduced-order observer for micro satellite stabilization in space. In: Proceedings of the International Conference on Man-Machine Systems (ICoMMS), pp. 11–13 (2009)

    Google Scholar 

  71. Rutkowski, L.: Flexible Neuro-Fuzzy Systems. Kluwer Academic Publishers (2004)

    Google Scholar 

  72. Rutkowski, L.: Computational Intelligence. Springer (2008)

    Google Scholar 

  73. Rutkowski, L., Cpałka, K.: A general approach to neuro-fuzzy systems. In: The 10th IEEE International Conference on Fuzzy Systems, 2001, Melbourne, pp. 1428–1431 (2001)

    Google Scholar 

  74. Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: 2nd Euro-International Symposium on Computation Intelligence, vol. 76, pp. 85–90, Kosice, Slovakia, 16–19 June 2002

    Google Scholar 

  75. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control Cybern. 31(2), 297–308 (2002)

    MATH  Google Scholar 

  76. Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1031–1036, Budapest, 26–29 July 2004

    Google Scholar 

  77. Rutkowski, L., Cpałka, K.: Designing and learning of adjustable quasi-triangular norms with applications to neuro-fuzzy systems. IEEE Trans. Fuzzy Syst. 13, 140–151 (2005)

    Article  Google Scholar 

  78. Rutkowski, L., Cpałka, K.: Flexible neuro fuzzy systems. IEEE Trans. Neural Netw. 14(2003), 554–574 (2013)

    MATH  Google Scholar 

  79. Rutkowski, L., Przybył, A., Cpałka, K.: Novel online speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Trans. Ind. Electron. 59(2), 1238–1247 (2012)

    Article  Google Scholar 

  80. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. Lect. Notes Artif. Intell. 114, 645–650 (2010)

    Google Scholar 

  81. Sánchez, G., Jiménez, F., Sánchez, J.M., Alcaraz, J.M.: A multi-objective neuro-evolutionary algorithm to obtain interpretable fuzzy models. In: Current Topics in Artificial Intelligence. Lecture Notes in Computer Science, vol. 5988, pp. 51–60 (2010)

    Google Scholar 

  82. Scherer, R.: Neuro-fuzzy systems with relation matrix. Artif. Intell. Soft Comput. 6113, 210–215 (2010)

    Article  Google Scholar 

  83. Shukla, P.K., Tripathi, S.P.: A review on the interpretability-accuracy trade-off in evolutionary multi-objective fuzzy systems (EMOFS). Information 3, 256–277 (2012)

    Article  Google Scholar 

  84. Shukla, P.K., Tripathi, S.P.: Handling high dimensionality and interpretability-accuracy trade-off issues in evolutionary multiobjective fuzzy classifiers. Int. J. Sci. Eng. Res. 5(6), 665–671 (2014)

    Google Scholar 

  85. Shukla, P.K., Tripathi, S.P.: A new approach for tuning interval type-2 fuzzy knowledge bases using genetic algorithms. J. Uncertainty Anal. Appl. 2, 4 (2014)

    Article  Google Scholar 

  86. Siminski, K.: Rule weights in a neuro-fuzzy system with a hierarchical domain partition. Int. J. Appl. Math. Comput. Sci. 20(2), 337–347 (2010)

    Article  MATH  Google Scholar 

  87. Singh, L., Kumar, S., Paul, S.: Automatic simultaneous architecture and parameter search in fuzzy neural network learning using novel variable length crossover differential evolution. In: IEEE International Conference on Fuzzy Systems, pp. 1795–1802 (2008)

    Google Scholar 

  88. Tadeusiewicz, R.: Place and role of intelligent systems in computer science. Comput. Methods Mater. Sci. 10(4), 193–206 (2010)

    Google Scholar 

  89. Tan, Y., Shi, Y., Tan, K.C.: Fireworks algorithm for optimization. In: ICSI 2010, Part I. LNCS, vol. 6145, pp. 355–364 (2010)

    Google Scholar 

  90. Tan, C.: More than Accuracy: Interpretability. @MLDG 08/15/2013. https://chenhaot.com/pubs/mldg-interpretability.pdf (2013)

  91. Tikk, D., Gedeon, T., Wong, K.: A feature ranking algorithm for fuzzy modeling problems. In: Interpretability Issues in Fuzzy Modeling, pp. 176–192. Springer (2003)

    Google Scholar 

  92. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 49, 560–567 (2012)

    Article  Google Scholar 

  93. Vanhoucke, V., Silipo, R.: Interpretability in multidimensional classification. In: Interpretability Issues in Fuzzy Modeling, pp. 193–217. Springer (2003)

    Google Scholar 

  94. Viharos, Z.J., Kis, K.B.: Survey on neuro-fuzzy systems and their applications in technical diagnostics. In: 13th IMEKO TC10 Workshop on Technical Diagnostics Advanced Measurement Tools in Technical Diagnostics for Systems’ Reliability and Safety (2014)

    Google Scholar 

  95. Wang, H., Kwong, S., Jin, Y., Wei, W., Man, K.F.: Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets Syst. 149(1), 149–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  96. Yang, C.H., Moi, S.H., Lin, Y.D., Chuang, L.Y.: Genetic algorithm combined with a local search method for identifying susceptibility genes. J. Artif. Intell. Soft Comput. Res. 6, 203–212 (2016)

    Article  Google Scholar 

  97. Yeh, I.C.: Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cement Concr. Compos. 29(6), 474–480 (2007)

    Article  Google Scholar 

  98. Yin, Z., O’Sullivan C, Brabazon A.: An analysis of the performance of genetic programming for realised volatility forecas. J. Artif. Intell. Soft Computing Res. 6, 155–172 (2016)

    Google Scholar 

  99. Zalasiński, M.: New algorithm for on-line signature verification using characteristic global features. Adv. Intell. Syst. Comput. 432, 137–146 (2016)

    Google Scholar 

  100. Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using characteristic hybrid partitions. Adv. Intell. Syst. Comput. 432, 147–157 (2016)

    Google Scholar 

  101. Zalasiński, M., Cpałka, K., Hayashi, Y.: A new approach to the dynamic signature verification aimed at minimizing the number of global features. Lect. Notes Comput. Sci. 9693, 218–231 (2016)

    Article  Google Scholar 

  102. Zalasiński, M., Cpałka, K., Rakus-Andersson, E.: An idea of the dynamic signature verification based on a hybrid approach. Lect. Notes Comput. Sci. 9693, 232–246 (2016)

    Article  Google Scholar 

  103. Żurada, J.M.: Introduction to Artificial Neural Systems. Jaico Publishing House (2005)

    Google Scholar 

Download references

Acknowledgements

The project was financed by the National Science Centre (Poland) on the basis of the decision number DEC-2012/05/B/ST7/02138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Rutkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Łapa, K., Cpałka, K., Rutkowski, L. (2018). New Aspects of Interpretability of Fuzzy Systems for Nonlinear Modeling. In: Gawęda, A., Kacprzyk, J., Rutkowski, L., Yen, G. (eds) Advances in Data Analysis with Computational Intelligence Methods. Studies in Computational Intelligence, vol 738. Springer, Cham. https://doi.org/10.1007/978-3-319-67946-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67946-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67945-7

  • Online ISBN: 978-3-319-67946-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics