Skip to main content

EpiStrat: A Tool for Comparing Strategies for Tackling Urban Epidemic Outbreaks

  • Conference paper
  • First Online:
Smart Health (ICSH 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10347))

Included in the following conference series:

Abstract

Management and mitigation of epidemic outbreaks is a major challenge for health-care authorities and governments in general. In this paper, we first give a formal definition of a strategy for dealing with epidemics, especially in heterogeneous urban environments. Different strategies target different demographic classes of a city, and hence have different effects on the progression and impact of an epidemic. One has to therefore choose among various competing strategies. We show how the relative merits of these strategies can be compared against various metrics.

We demonstrate our approach by developing a tool that has an agent based discrete event simulator engine at its core. We believe that such a tool can provide a valuable what-if analysis and decision support infrastructure to urban health-care authorities for tackling epidemics. We also present a running example on an influenza-like disease on synthetic populations and demographics and compare different strategies for outbreaks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Additionally, we close down all schools in our simulations.

References

  1. Meyers, L.A., Newman, M.E.J., Pourbohloul, B.: Predicting epidemics on directed contact networks. J. Theoret. Biol. 240(3), 400–418 (2006)

    Google Scholar 

  2. Apolloni, A., Kumar, V.S.A., Marathe, M.V., Swarup, S.: Computational epidemiology in a connected world. Computer 42(12), 83–86 (2009)

    Article  Google Scholar 

  3. Bailey, N.: The Mathematical Theory of Infectious Diseases and its Applications. Griffin, London (1975)

    MATH  Google Scholar 

  4. Barrett, C.L., Bisset, K.R., Eubank, S.G., Feng, X., Marathe, M.V.: Episimdemics: An efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (2008)

    Google Scholar 

  5. Brauer, F.: Compartmental models in epidemiology. In: Brauer, F., van den Driessche, P., Wu, J. (eds.) Mathematical Epidemiology. Lecture Notes in Mathematics, vol. 1945, pp. 19–79. Springer, Berlin (2008). doi:10.1007/978-3-540-78911-6_2

    Chapter  Google Scholar 

  6. Broeck, W., Gioannini, C., Gonaçlves, B., Quaggiotto, M., Colizza, V., Vespignani, A.: The gleamviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale. BMC Infect. Dis. 11(37) (2011)

    Google Scholar 

  7. Durham, D., Casman, E.A.: Incorporating individual health-protective decisions into disease transmission models: a mathematical framework. J. Roy. Soc. Interface 9(68), 562–570 (2012)

    Article  Google Scholar 

  8. Eubank, S.: Scalable, efficient epidemiological simulation. In: Proceedings of the 2002 ACM Symposium on Applied Computing. SAC 2002, pp. 139–145 (2002)

    Google Scholar 

  9. Eubank, S., Guclu, H., Anil Kumar, V.S., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N.: Modelling disease outbreaks in realistic urban social networks. Nature 429(6988), 180–184 (2004)

    Google Scholar 

  10. Frias-Martinez, E., Williamson, G., Frias-Martinez, V.: An agent-based model of epidemic spread using human mobility and social network information. In: Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third International Conference on Social Computing (SocialCom), pp. 57–64. IEEE (2011)

    Google Scholar 

  11. Funk, S., Gilad, E., Watkins, C., Jansen, V.A.A.: The spread of awareness and its impact on epidemic outbreaks. Proc. Nat. Acad. Sci. 106(16), 6872–6877 (2009)

    Google Scholar 

  12. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. Interface 2, 295–307 (2005)

    Google Scholar 

  14. Kermack, W., McKendrick, A.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700–721 (1927)

    Article  MATH  Google Scholar 

  15. Lloyd, A.L., May, R.M.: How viruses spread among computers and people. Science 292(5520), 1316–1317 (2001)

    Google Scholar 

  16. Mao, L.: Predicting self-initiated preventive behavior against epidemics with an agent-based relative agreement model. J. Artif. Soc. Soc. Simul. 18(4), 6 (2015)

    Article  Google Scholar 

  17. Meyers, L.A.: Contact network epidemiology: bond percolation applied to infectious disease prediction and control. Bull. Amer. Math. Soc. 44, 63–86 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Newman, M.: The spread of epidemic diseases on networks. Phys. Rev. E 66, 016128 (2002)

    Article  MathSciNet  Google Scholar 

  19. Nsubuga, P., White, M.E., Thacker, S.B., Anderson, M.A., Blount, S.B., Broome, C.V., Chiller, T.M., Espitia, V., Imtiaz, R., Sosin, D., Stroup, D.F., Tauxe, R.B., Vijayaraghavan, M., Trostle, M.: Public health surveillance: a tool for targeting and monitoring interventions. In: Disease Control Priorities in Developing Countries, 2nd edn. Washington (DC). The International Bank for Reconstruction and Development/The World Bank (2006). Chap. 53

    Google Scholar 

  20. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015)

    Article  MathSciNet  Google Scholar 

  21. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)

    Article  Google Scholar 

  22. Singh, S.: Branching processes in disease epidemics. Ph.D. Thesis, Cornell University (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Panduranga Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Arsekar, R., Mandarapu, D.K., Rao, M.V.P. (2017). EpiStrat: A Tool for Comparing Strategies for Tackling Urban Epidemic Outbreaks. In: Chen, H., Zeng, D., Karahanna, E., Bardhan, I. (eds) Smart Health. ICSH 2017. Lecture Notes in Computer Science(), vol 10347. Springer, Cham. https://doi.org/10.1007/978-3-319-67964-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67964-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67963-1

  • Online ISBN: 978-3-319-67964-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics