Skip to main content

Chemical Computing Through Simulated Evolution

  • Chapter
  • First Online:
Inspired by Nature

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 28))

Abstract

Many forms of unconventional computing, i.e., massively parallel computers which exploit the non-linear material properties of their substrate, can be realised through simulated evolution. That is, the behaviour of non-linear media can be controlled automatically and the structural design of the media optimized through the nature-inspired machine learning approach. This chapter describes work using the Belousov-Zhabotinsky reaction as a non-linear chemical medium in which to realise computation. Firstly, aspects of the basic structure of an experimental chemical computer are evolved to implement two Boolean logic functions through a collision-based scheme. Secondly, a controller is evolved to dynamically affect the rich spatio-temporal chemical wave behaviour to implement three Boolean functions, in both simulation and experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamatzky, A. (ed.): Collision-based Computing. Springer, London (2002)

    MATH  Google Scholar 

  2. Adamatzky, A., De Lacy Costello, B., Asai, T.: Reaction-Diffusion Computers. Elsevier (2005)

    Google Scholar 

  3. Agladze, K., Aliev, R.R., Yamaguhi, T., Yoshikawa, K.: Chemical diode. J. Phys. Chem. 100, 13895–13897 (1996)

    Article  Google Scholar 

  4. Bar-Eli, K., Reuveni, S.: Stable stationary-states of coupled chemical oscillators: experimental evidence. J. Phys. Chem. 89, 1329–1330 (1985)

    Article  Google Scholar 

  5. Crowley, M.F., Field, R.J.: Electrically coupled Belousov-Zhabotinskii oscillators 1: experiments and simulations. J. Phys. Chem. 90, 1907–1915 (1986)

    Article  Google Scholar 

  6. Dolnik, M., Epstein, I.R.: Coupled chaotic oscillators. Phys. Rev. E 54, 3361–3368 (1996)

    Article  Google Scholar 

  7. Gorecki, J., Yoshikawa, K., Igarashi, Y.: On chemical reactors that can count. J. Phys. Chem. A 107, 1664–1669 (2003)

    Article  Google Scholar 

  8. Harding, S.L., Miller, J.F.: Evolution in materio: initial experiments with liquid crystal. In: Evolvable Hardware, NASA/DOD Conference on Computer Society, pp. 289–299. IEEE (2004)

    Google Scholar 

  9. Hjelmfelt, A., Ross, J.: Mass-coupled chemical systems with computational properties. J. Phys. Chem. 97, 7988–7992 (1993)

    Article  Google Scholar 

  10. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural networks and turing machines. PNAS 88, 10983–10987 (1991)

    Article  MATH  Google Scholar 

  11. Holz, R., Schneider, F.W.: Control of dynamic states with time-delay between 2 mutually flow-rate coupled reactors. J. Phys. Chem. 97, 12239 (1993)

    Article  Google Scholar 

  12. Kauffman, S.: The Origins of Order. Oxford (1993)

    Google Scholar 

  13. Kawato, M., Suzuki, R.: Two coupled neural oscillators as a model of the circadian pacemaker. J. Theor. Biol. 86, 547–575 (1980)

    Article  MathSciNet  Google Scholar 

  14. Kuhnert, L., Agladze, K.I., Krinsky, V.I.: Image processing using light sensitive chemical waves. Nature 337, 244–247 (1989)

    Article  Google Scholar 

  15. Laplante, J.P., Pemberton, M., Hjelmfelt, A., Ross, J.: Experiments on pattern recognition by chemical kinetics. J. Phys. Chem. 99, 10063–10065 (1995)

    Article  Google Scholar 

  16. Lebender, D., Schneider, F.W.: Logical gates using a nonlinear chemical reaction. J. Phys. Chem. 98, 7533–7537 (1994)

    Article  Google Scholar 

  17. Miller, J.F., Downing, K.: Evolution in materio: looking beyond the silicon box. In: Proceedings of the NASA/DOD Conference on Evolvable Hardware, Computer Society, pp. 167–176. IEEE (2002)

    Google Scholar 

  18. Miller, J., Harding, S., Tufte, G.: Evolution in-materio: evolving computation in materials. Evol. Intel. 7(1), 49–67 (2014)

    Article  Google Scholar 

  19. Mitchell, M., Hraber, P., Crutchfield, J.: Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Syst. 7, 83–130 (1993)

    MATH  Google Scholar 

  20. Motoike, I.N., Yoshikawa, K., Iguchi, Y., Nakata, S.: Real time memory on an excitable field. Phys. Rev. E 63, 1–4 (2001)

    Article  Google Scholar 

  21. Sielewiesiuk, J., Gorecki, J.: Passive barrier as a transformer of chemical frequency. J. Phys. Chem. A 106, 4068–4076 (2002)

    Article  Google Scholar 

  22. Sipper, M.: Evolution of Parallel Cellular Machines. Springer (1997)

    Google Scholar 

  23. Steinbock, O., Toth, A., Showalter, K.: Navigating complex labyrinths: optimal paths from chemical waves. Science 267, 868–871 (1995)

    Article  Google Scholar 

  24. Steinbock, O., Kettunen, P., Showalter, K.: Chemical wave logic gates. J. Phys. Chem. 100, 18970–18975 (1996)

    Article  Google Scholar 

  25. Stuchl, I., Marek, M.: Dissipative structures in coupled cells: experiments. J. Phys. Chem. 77, 2956–2963 (1982)

    Article  Google Scholar 

  26. Thompson, A.: An evolved circuit, intrinsic in silicon, entwined with physics. In: Higuchi, T., Iwata, M., Weixin, L. (eds.) Proceedings of 1st International Conferences on Evolvable Systems (ICES’96), LNCS. pp. 1259:390–405. Springer (1997)

    Google Scholar 

  27. Von Neumann, J.: The Theory of Self-Reproducing Automata. University of Illinois (1966)

    Google Scholar 

  28. Wang, J., Kádár, S., Jung, P., Showalter, K.: Noise driven avalanche behavior in subexcitable media. Phys. Rev. Lett. 82, 855–858 (1999)

    Article  Google Scholar 

  29. Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535–537 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry Bull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bull, L., Toth, R., Stone, C., De Lacy Costello, B., Adamatzky, A. (2018). Chemical Computing Through Simulated Evolution. In: Stepney, S., Adamatzky, A. (eds) Inspired by Nature. Emergence, Complexity and Computation, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-67997-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67997-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67996-9

  • Online ISBN: 978-3-319-67997-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics