Skip to main content

Sub-Symbolic Artificial Chemistries

  • Chapter
  • First Online:
Inspired by Nature

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 28))

Abstract

We wish to use Artificial Chemistries to build and investigate open-ended systems. As such, we wish to minimise the number of explicit rules and properties needed. We describe here the concept of sub-symbolic Artificial Chemistries (ssAChems), where reaction properties are emergent properties of the internal structure and dynamics of the component particles. We define the components of a ssAChem, and illustrate it with two examples: RBN-world, where the particles are Random Boolean Networks, the emergent properties come from the dynamics on an attractor cycle, and composition is through rewiring the components to form a larger RBN; and SMAC, where the particles are Hermitian matrices, the emergent properties are eigenvalues and eigenvectors, and composition is through the non-associative Jordan product. We conclude with some ssAChem design guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To follow our design criteria, we should choose a non-arbitrary element. Future work includes developing a choice criterion for this.

References

  1. ALife XV, Cancun, Mexico. MIT Press (2016)

    Google Scholar 

  2. Anet, F.A.L.: The place of metabolism in the origin of life. Curr. Opin. Chem. Biol. 8(6), 654–659 (2004)

    Google Scholar 

  3. Banzhaf, W.: Self-replicating sequences of binary numbers—Foundations I: General. Biol. Cybern. 69(4), 269–274 (1993)

    Google Scholar 

  4. Banzhaf, W.: Self-replicating sequences of binary numbers—Foundations II: Strings of length \(N= 4\). Biol. Cybern. 69(4), 275–281 (1993)

    Article  MATH  Google Scholar 

  5. Banzhaf, W.: Self-organization in a system of binary strings. In: Proceedings of Artificial Life IV, pp. 109–118 (1994)

    Google Scholar 

  6. Banzhaf, W., Baumgaertner, B., Beslon, G., Doursat, R., Foster, J.A., McMullin, B., de Melo, V.V., Miconi, T., Spector, L., Stepney, S., White, R.: Requirements for evolvability in complex systems. Theory Biosci. 135(3), 131–161 (2016)

    Google Scholar 

  7. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial chemistries–a review. Artif. Life 7(3), 225–275 (2001)

    Article  Google Scholar 

  8. Eigen, M., Schuster, P.: A principle of natural self-organization. Naturwissenschaften 64(11), 541–565 (1977)

    Article  Google Scholar 

  9. Faulconbridge, A.: RBN-world: sub-symbolic artificial chemistry for artificial life. Ph.D. thesis, University of York, UK (2011)

    Google Scholar 

  10. Faulconbridge, A., Stepney, S., Miller, J.F., Caves, L.: RBN-world: The hunt for a rich AChem. In: ALife XII, Odense, Denmark, pp. 261–268. MIT Press (2010)

    Google Scholar 

  11. Faulconbridge, A., Stepney, S., Miller, J.F., Caves, L.S.D.: RBN-World: a sub-symbolic artificial chemistry. In: ECAL 2009, Budapest, Hungary. LNCS, vol. 5777, pp. 377–384. Springer (2011)

    Google Scholar 

  12. Faulkner, P., Sebald, A., Stepney, S.: Jordan algebra AChems: exploiting mathematical richness for open ended design. In: ALife XV, Cancun, Mexico [1], pp. 582–589 (2016)

    Google Scholar 

  13. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  14. Hutton, T.J.: Evolvable self-replicating molecules in an artificial chemistry. Artif. Life 8(4), 341–356 (2002)

    Article  Google Scholar 

  15. Hutton, T.J.: Evolvable self-reproducing cells in a two-dimensional artificial chemistry. Artif. Life 13(1), 11–30 (2007)

    Article  MathSciNet  Google Scholar 

  16. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theoret. Biol. 22(3), 437–467 (1969)

    Article  MathSciNet  Google Scholar 

  17. Kauffman, S.A.: Autocatalytic sets of proteins. J. Theoret. Biol. 119(1), 1–24 (1986)

    Article  Google Scholar 

  18. Kauffman, S.A.: Requirements for evolvability in complex systems. Physica D 42, 135–152 (1990)

    Article  Google Scholar 

  19. Kauffman, S.A.: The Origins of Order. Oxford University Press (1993)

    Google Scholar 

  20. Krastev, M., Sebald, A., Stepney, S.: Emergent bonding properties in the Spiky RBN AChem. In: ALife XV, Cancun, Mexico [1], pp. 600–607 (2016)

    Google Scholar 

  21. McCrimmon, K.: Jordan algebras and their applications. Bull. Am. Math. Soc. 84(4), 612–627 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ogawa, A.K., Yiqin, W., McMinn, D.L., Liu, J., Schultz, P.G., Romesberg, F.E.: Efforts toward the expansion of the genetic alphabet: information storage and replication with unnatural hydrophobic base pairs. J. Am. Chem. Soc. 122(14), 3274–3287 (2000)

    Article  Google Scholar 

  23. Ono, N., Ikegami, T.: Model of self-replicating cell capable of self-maintenance. In: Advances in artificial life, pp. 399–406. Springer (1999)

    Google Scholar 

  24. Pross, A.: Causation and the origin of life: metabolism or replication first? Orig. Life Evol. Biosph. 34(3), 307–321 (2004)

    Article  Google Scholar 

  25. Suzuki, H., Ono, N., Yuta, K.: Several necessary conditions for the evolution of complex forms of life in an artificial environment. Artif. Life 9(2), 153–174 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Faulkner is funded by an York Chemistry Department Teaching PhD studentship. Krastev is funded by a York Computer Science Department EPSRC DTA PhD studentship. We thank Leo Caves for some insightful comments on this work. We thank Michael Krotosky, Andrew Balin, and Rudi Mears for their work in exploring some earlier versions of ideas presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Stepney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Faulkner, P., Krastev, M., Sebald, A., Stepney, S. (2018). Sub-Symbolic Artificial Chemistries. In: Stepney, S., Adamatzky, A. (eds) Inspired by Nature. Emergence, Complexity and Computation, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-67997-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67997-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67996-9

  • Online ISBN: 978-3-319-67997-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics