Skip to main content

Polymeric Biomaterials Based on Polylactide, Chitosan and Hydrogels in Medicine

  • Chapter
  • First Online:
Biomaterials in Clinical Practice

Abstract

Polymeric biomaterials represent large and very adaptable class of biomaterials, which makes them very suitable for diversity of biomedical applications. Polymers can be synthesized to have a variety of structures and suitable chemical, physical, biomimetic and surface properties. An overabundance of polymeric biomaterials with different compositions and physicochemical properties have already been developed and investigated; however, there are still many active studies about these materials. This chapter ensures a structural review of biodegradable polymers and discusses their physicochemical characteristics, structure property, applications and limitations in medicine. It is the authors’ intent to provide an insight over the available synthetic and natural polymer classes. Some types of polymer materials are less discussed than the other more relevant. A biocompatible, degradable polymer, polylactic acid is very popular so called green ‘eco-friendly’ material with a most promising development prospect. Besides biocompatibility and biodegradability, natural polymer, chitosan, possess outstanding properties. Hydrogels are super absorbent polymeric materials with one of the main role in health care. For these biopolymers, reviews are referenced to present guidance for further reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiba S (1992) Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans. Int J Biol Macromol 14(4):225–228

    Article  Google Scholar 

  • Anderson J, Shive M (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Delivery Rev 28(1):5–24

    Article  Google Scholar 

  • Aranaz I, Mengibar M, Harris R et al (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3(2):203–230

    Google Scholar 

  • Aranaz I, Harris R, Heras A (2010) Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem 14(3):308–330

    Article  Google Scholar 

  • Athanasiou K, Niederauer G, Agrawal M (1996) Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17(2):93–102

    Article  Google Scholar 

  • Babu V, Sairam M, Hosamani K et al (2006) Development of 5-fluorouracil loaded poly(acrylamide-co-methylmethacrylate) novel core-shell microspheres: in vitro release studies. Int J Pharm 325(1–2):55–62

    Article  Google Scholar 

  • Baek K, Jeong J, Shkumatov A et al (2013) In situ self-folding assembly of a multi-walled hydrogel tube for uniaxial sustained molecular release. Adv Mater 25(39):5568–5573

    Article  Google Scholar 

  • Bagheri-Khoulenjani S, Taghizadeh S, Mirzadeh H (2009) An investigation on the short-term biodegradability of chitosan with various molecular weights and degrees of deacetylation. Carbohydr Polym 78(4):773–778

    Article  Google Scholar 

  • Barbucci R (2009) Hydrogels: biological properties and applications. Springer-Verlag Italia, Milan

    Book  Google Scholar 

  • Beumer G, Van Blitterswijk C, Ponec M (1994) Biocompatibility of a biodegradable matrix used as a skin substitute: an in vivo evaluation. J Biomed Mater Res 28(5):545–552

    Article  Google Scholar 

  • Bini T, Gao S, Wang S et al (2005) Development of fibrous biodegradable polymer conduits for guided nerve regeneration. J Mater Sci Mater Med 16(4):367–375

    Article  Google Scholar 

  • Black J (2006) Biological performance of materials; fundamentals of biocompatibility. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Brannon-Peppas L (1995) Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int J Pharm 116(1):1–9

    Article  Google Scholar 

  • Brunner A, Mäder K, Göpferich A (1999) pH and osmotic pressure inside biodegradable microspheres during erosion1. Pharm Res 16(6):847–853

    Article  Google Scholar 

  • Burdick J, Anseth K (2002) Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23(22):4315–4323

    Article  Google Scholar 

  • Burdick J, Khademhosseini A, Langer R (2004) Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20(13):5153–5156

    Article  Google Scholar 

  • Buwalda SJ, Boere KW, Dijkstra PJ et al (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Controlled Release 190:254–273

    Article  Google Scholar 

  • Cairncross R, Becker J, Ramaswamy S et al (2006) Moisture sorption, transport, and hydrolytic degradation in polylactide. In: McMillan J, Adney W, Mielenz J, Klasson K (eds) Twenty-seventh symposium on biotechnology for fuels and chemicals. ABAB symposium. Humana Press, Denver, pp 774–785

    Google Scholar 

  • Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  Google Scholar 

  • Cao Y, Vacanti J, Ma P et al (1994) Generation of neo-tendon using synthetic polymers seeded with tenocytes. Transplant Proc 26(6):2–3390

    Google Scholar 

  • Carlson K, Cameron J, Lindstrom R (1993) Assessment of the blood-aqueous barrier by fluorophotometry following poly (methyl methacrylate), silicone, and hydrogel lens implantation in rabbit eyes. J Cataract Refract Surg 19(1):9–15

    Article  Google Scholar 

  • Castelli F, Conti B, Maccarrone D et al (1998) Comparative study of ‘in vitro’ release of anti-inflammatory drugs from polylactide-co-glycolide microspheres. Int J Pharm 176(1):85–98

    Article  Google Scholar 

  • Chen X, McCarthy S, Gross R (1997) Synthesis and characterization of [l]-lactide−ethylene oxide multiblock copolymers. Macromolecules 30(15):4295–4301

    Article  Google Scholar 

  • Chen C, Dong L, Cheung M (2005) Preparation and characterization of biodegradable poly(l-lactide)/chitosan blends. Eur Polym J 41(5):958–966

    Article  Google Scholar 

  • Choi E-J, Kim C-H, Park J-K (1999) Synthesis and characterization of starch-g-polycaprolactone copolymer. Macromolecules 32(22):7402–7408

    Article  Google Scholar 

  • Corkhill P, Hamilton C, Tighe B (1989) Synthetic hydrogels VI. Hydrogel composites as wound dressings and implant materials. Biomaterials 10(1):3–10

    Article  Google Scholar 

  • Correlo V, Boesel L, Bhattacharya M et al (2005) Properties of melt processed chitosan and aliphatic polyester blends. Mater Sci Eng, A 403(1–2):57–68

    Article  Google Scholar 

  • Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792

    Article  Google Scholar 

  • Cutright D, Beasley Iii J, Perez B (1971) Histologic comparison of polylactic and polyglycolic acid sutures. Oral Surg Oral Med Oral Pathol 32(1):165–173

    Article  Google Scholar 

  • Dash M, Chiellini F, Ottenbrite R et al (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014

    Article  Google Scholar 

  • Day R, Maquet V, Boccaccini A et al (2005) In vitro and in vivo analysis of macroporous biodegradable poly(D,L-lactide-co-glycolide) scaffolds containing bioactive glass. J Biomed Mater Res Part B Appl Biomater 75A(4):778–787

    Article  Google Scholar 

  • de Lima GG, Kanwar D, Macken D et al (2015) Smart hydrogels: therapeutic advancements in hydrogel technology for smart drug delivery applications. In: Kumar V, Thakur DK (ed) Handbook of polymers for pharmaceutical technologies: bioactive and compatible synthetic/hybrid polymers, vol 4. Wiley, Hoboken, New York, pp 1–16

    Google Scholar 

  • Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237

    Article  Google Scholar 

  • Deng X, Liu Y, Yuan M et al (2002) Preparation and characterization of poly-DL-lactide–poly(ethylene glycol) microspheres containing λDNA. J Appl Polym Sci 86(10):2557–2566

    Article  Google Scholar 

  • Donabedian D, McCarthy S (1998) Acylation of pullulan by ring-opening of lactones. Macromolecules 31(4):1032–1039

    Article  Google Scholar 

  • Drotleff S, Lungwitz U, Breunig M et al (2004) Biomimetic polymers in pharmaceutical and biomedical sciences. Eur J Pharm Biopharm 58(2):385–407

    Article  Google Scholar 

  • Drury J, Mooney D (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    Article  Google Scholar 

  • Duncan R, Kopeček J (1984) Soluble synthetic polymers as potential drug carriers. In: Polymers in medicine. Advances in polymer science, vol 57. Springer, Berlin, pp 51–101

    Google Scholar 

  • East G, McIntyre J, Qin Y (1991) Medical use of chitosan. In: Skjak-Brack G, Anthonsen T, Sandford P (eds) Chitin and chitosan. Elsevier, London, pp 757–764

    Google Scholar 

  • Edlund U, Albertsson A (2002) Degradable polymer microspheres for controlled drug delivery. In: Degradable aliphatic polyesters. Advances in polymer science, vol 157. Springer, Berlin, Heidelberg, pp 67–112

    Google Scholar 

  • Freed L, Vunjak-Novakovic G, Biron R et al (1994) Biodegradable polymer scaffolds for tissue engineering. Nat Biotech 12(7):689–693

    Article  Google Scholar 

  • Funkhouser J, Aronson N (2007) Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol 7(1):96

    Article  Google Scholar 

  • Fusco S, Huang H, Peyer K et al (2015) Shape-switching microrobots for medical applications: the influence of shape in drug delivery and locomotion. Appl Mat Interfac 7(12):68–6803

    Article  Google Scholar 

  • Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111(3):441–453

    Article  Google Scholar 

  • Gajria A, Davé V, Gross R et al (1996) Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate). Polymer J 37(3):437–444

    Article  Google Scholar 

  • Gibas I, Janik H (2010) Review: synthetic polymer hydrogels for biomedical applications. Chem & Chem Technol 4:297–304

    Google Scholar 

  • Gonsalves K, Jin S, Baraton M-I (1998) Synthesis and surface characterization of functionalized polylactide copolymer microparticles. Biomaterials 19(16):1501–1505

    Article  Google Scholar 

  • Gonzalez M, Ruseckaite R, Cuadrado T (1999) Structural changes of polylactic-acid (PLA) microspheres under hydrolytic degradation. J Appl Polym Sci 71(8):1223–1230

    Article  Google Scholar 

  • Graiver D, Durall R, Okada T (1993) Surface morphology and friction coefficient of various types of Foley catheter. Biomaterials 14(6):465–469

    Article  Google Scholar 

  • Gupta A, Kumar V (2007) New emerging trends in synthetic biodegradable polymers—polylactide: a critique. Eur Polym J 43(10):4053–4074

    Article  Google Scholar 

  • Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579

    Article  Google Scholar 

  • Hacker M, Mikos A (2011) Synthetic polymers. In: Atala A, Lanza R, Thomson JA, Nerem RM (eds) Principles of regenerative medicine, 2nd edn. Academic Press, Bulrington, pp 587–622

    Chapter  Google Scholar 

  • Hench L (1980) Biomaterials. Science 208:826–831

    Article  Google Scholar 

  • Hench L, Polak J (2002) Third-generation biomedical materials. Science 295(5557):1014–1017

    Article  Google Scholar 

  • Hern D, Hubbell J (1998) Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res 39(2):266–276

    Article  Google Scholar 

  • Higa O, Rogero S, Machado L et al (1999) Biocompatibility study for PVP wound dressing obtained in different conditions. Radiat Phys Chem 55(5):705–707

    Article  Google Scholar 

  • Hirano S (2001) Wet-spinning and applications of functional fibers based on chitin and chitosan. Macromol Symp 168(1):21–30

    Article  Google Scholar 

  • Hoogsteen W, Postema A, Pennings A et al (1990) Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers. Macromolecules 23(2):634–642

    Article  Google Scholar 

  • Hu Y, Jiang X, Ding Y et al (2003) Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)-poly(ethylene oxide)-polylactide amphiphilic copolymer nanoparticles. Biomaterials 24(13):2395–2404

    Article  Google Scholar 

  • Hutmacher D (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  Google Scholar 

  • Jain R (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21(23):2475–2490

    Article  Google Scholar 

  • Jain R, Shah N, Malick A et al (1998) Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev Ind Pharm 24(8):703–727

    Article  Google Scholar 

  • Jen A, Wake M, Mikos A (1996) Review: hydrogels for cell immobilization. Biotechnol Bioeng 50(4):357–364

    Article  Google Scholar 

  • John R, Nampoothiri K, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74(3):524–534

    Article  Google Scholar 

  • Juni H, Nakano N (1987) Poly(hydroxy acids) in drug delivery. Crit Rev Ther Drug Carrier Syst 3(3):209–232

    Google Scholar 

  • Kamath K, Park K (1993) Biodegradable hydrogels in drug delivery. Adv Drug Delivery Rev 11(1–2):59–84

    Article  Google Scholar 

  • Kaufmann P, Heimrath S, Kim B et al (1997) Highly porous polymer matrices as a three-dimensional culture system for hepatocytes. Cell Transplant 6(5):463–468

    Article  Google Scholar 

  • Kawase M, Miura N, Kurikawa N et al (1999) Immobilization of tripeptide growth factor glycyl-L-histidyl-L-lysine on poly(vinylalcohol)-quarternized stilbazole (PVA-SbQ) and its use as a ligand for hepatocyte attachment. Biol Pharm Bull 22(9):999–1001

    Article  Google Scholar 

  • Kean T, Thanou M (2009) Chitin and chitosan—sources, production and medical applications. In: Tang B-Z, Williams P (eds) Renewable resources for functional polymers and biomaterials: polysaccharides, proteins and polyesters. Kentus Books, London, pp 327–361

    Google Scholar 

  • Kenawy ER, Kamoun EA, Eldin MSM et al (2014) Physically crosslinked poly (vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: synthesis and characterization for biomedical applications. Arab J Chem 7(3):372–380

    Article  Google Scholar 

  • Kim S, Shin I, Lee Y (1998) Preparation and characterization of biodegradable nanospheres composed of methoxy poly(ethylene glycol) and dl-lactide block copolymer as novel drug carriers. J Control Release 56(1–3):197–208

    Article  Google Scholar 

  • Kim T-H, Jiang H-L, Jere D et al (2007) Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 32(7):726–753

    Article  Google Scholar 

  • Kobayashi H, Ikada Y (1991) Covalent immobilization of proteins on to the surface of poly (vinyl alcohol) hydrogel. Biomaterials 12(8):747–751

    Article  Google Scholar 

  • Kopeček J, Tang A, Wang C et al (2001) De novo design of biomedical polymers: hybrids from synthetic macromolecules and genetically engineered protein domains. Macromol Symp 174(1):31–42

    Article  Google Scholar 

  • Kozlowski M, Masirek R, Piorkowska E et al (2007) Biodegradable blends of poly(L-lactide) and starch. J Appl Polym Sci 105(1):269–277

    Article  Google Scholar 

  • Kulshrestha A, Mahapatro A (2008) Polymers for biomedical applications. In: Kulshrestha AS, Mahapatro A (eds) Polymers for biomedical applications. ACS symposium series, vol 977. American Chemical Society, Washington, pp 1–7

    Google Scholar 

  • Lacasse F, Hildgen P, McMullen J (1998) Surface and morphology of spray-dried pegylated PLA microspheres. Int J Pharm 174(1–2):101–109

    Article  Google Scholar 

  • Laleg M, Pikulik I (1991) Wet-web strength increase by chitosan. Nordic Pulp Paper Res J 6(3):99–103

    Google Scholar 

  • Langer R (2000) Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 33(2):94–101

    Article  Google Scholar 

  • Langer R, Peppas N (2003) Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J 49(12):2990–3006

    Article  Google Scholar 

  • Langer R, Tirrell D (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    Article  Google Scholar 

  • Langer R, Vacanti J (1993) Tissue engineering. Science 260(5110):920–926

    Article  Google Scholar 

  • Lee K, Mooney D (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880

    Article  Google Scholar 

  • Lee C, Grodzinsky A, Spector M (2001) The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials 22(23):3145–3154

    Article  Google Scholar 

  • Leedy M, Martin H, Norowski P et al (2011) Use of chitosan as a bioactive implant coating for bone-implant applications. In: Jayakumar R, Prabaharan M, Muzzarelli R (eds) Chitosan for biomaterials II, vol 244. Advances in polymer science. Springer, Berlin, pp 129–165

    Chapter  Google Scholar 

  • Lehr C-M, Bouwstra J, Schacht E et al (1992) In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int J Pharm 78(1–3):43–48

    Article  Google Scholar 

  • Li S (2003) Bioresorbable hydrogels prepared through stereocomplexation between poly(L-lactide) and poly(D-lactide) blocks attached to poly(ethylene glycol). Macromol Biosci 3(11):657–661

    Article  Google Scholar 

  • Li Y, Nothnagel J, Kissel T (1997) Biodegradable brush-like graft polymers from poly(D, L-lactide) or poly(D, L-lactide-co-glycolide) and charge-modified, hydrophilic dextrans as backbone—synthesis, characterization and in vitro degradation properties. Polymer J 38(25):6197–6206

    Article  Google Scholar 

  • Lin C-C, Anseth K (2013) The biodegradation of biodegradable polymeric biomaterials. In: Ratner A, Hoffman F, Schoen J, Lemons B (eds) Biomaterials science, 2nd edn. Academic Press, London, pp 716–728

    Chapter  Google Scholar 

  • Lu L, Peter S, Lyman M et al (2000) In vitro degradation of porous poly(L-lactic acid) foams. Biomaterials 21(15):1595–1605

    Article  Google Scholar 

  • Lucke A, Kiermaier J, Göpferich A (2002) Peptide acylation by poly(α-hydroxy esters). Pharm Res 19(2):175–181

    Article  Google Scholar 

  • Lutolf M, Hubbell J (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech 23(1):47–55

    Article  Google Scholar 

  • Ma P, Langer R (1999) Morphology and mechanical function of long-term in vitro engineered cartilage. J Biomed Mater Res 44(2):217–221

    Article  Google Scholar 

  • Madihally S, Matthew H (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20(12):1133–1142

    Article  Google Scholar 

  • Mainil-Varlet P, Rahn B, Gogolewski S (1997) Long-term in vivo degradation and bone reaction to various polylactides. 1. One–year results. Biomaterials 18(3):257–266

    Article  Google Scholar 

  • Malette W, Quigley M, Quigley H Jr et al (1986) Chitosan effect in vascular surgery, tissue culture and tissue regeneration. In: Muzzarelli R, Jeuniaux C, Gooday G (eds) Chitin in nature and technology, 1st edn. Plenum Press, New York, pp 435–442

    Chapter  Google Scholar 

  • Mann B, Gobin A, Tsai A et al (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22(22):3045–3051

    Article  Google Scholar 

  • Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer J 42(14):6209–6219

    Article  Google Scholar 

  • Martineau L, Shek P (2006) Evaluation of a bi-layer wound dressing for burn care: II. In vitro and in vivo bactericidal properties. Burns 32(2):172–179

    Article  Google Scholar 

  • Matsumoto J, Nakada Y, Sakurai K et al (1999) Preparation of nanoparticles consisted of poly(l-lactide)–poly(ethylene glycol)–poly(l-lactide) and their evaluation in vitro. Int J Pharm 185(1):93–101

    Article  Google Scholar 

  • Mehta R, Kumar V, Bhunia H et al (2005) Synthesis of poly (lactic acid): a review. J Macromol Sci Polym Rev 45(4):325–349

    Article  Google Scholar 

  • Meyvis T, De Smedt S, Demeester J et al (2000) Influence of the degradation mechanism of hydrogels on their elastic and swelling properties during degradation. Macromolecules 33(13):4717–4725

    Article  Google Scholar 

  • Middleton J, Tipton A (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    Article  Google Scholar 

  • Mikos A, Lyman M, Freed L et al (1994) Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture. Biomaterials 15(1):55–58

    Article  Google Scholar 

  • Molin A, Brundin J (1992) Cervical dilatation before first trimester elective abortion: a comparison between laminaria and a newly developed hydrogel tent, the A rod. Gynecol Obstet Invest 34(1):12–14

    Article  Google Scholar 

  • Müller R-J (2008) Biodegradability of polymers: regulations and methods for testing. In: Steinbuchel A (ed) Biopolymers online, vol 10. Wiley Publishers, p 366

    Google Scholar 

  • Murakami H, Kobayashi M, Takeuchi H et al (2000) Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Powder Technol 107(1–2):137–143

    Article  Google Scholar 

  • Muzzarelli R, Muzzarelli C (2005) Chitosan chemistry: relevance to the biomedical sciences. In: Heinze T (ed) Polysaccharides I. Advances in polymer science, vol 186. Springer, Berlin, pp 151–209

    Google Scholar 

  • Muzzarelli R, Baldassarre V, Conti F et al (1988) Biological activity of chitosan: ultrastructural study. Biomaterials 9(3):247–252

    Article  Google Scholar 

  • Myers R, Larsen D, Taso M et al (1991) Quantity of protein deposited on hydrogel contact lenses and its relation to visible protein deposits. Optom Vis Sci 68(10):776–782

    Article  Google Scholar 

  • Nampoothiri K, Nair N, John R (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501

    Article  Google Scholar 

  • Narayanan N, Roychoudhury P, Srivastava A (2004) L (+) lactic acid fermentation and its product polymerization. EJB Electron J Biotechnol 7(2):167–178

    Google Scholar 

  • Nguyen QV, Park JH, Lee DS (2015) Injectable polymeric hydrogels for the delivery of therapeutic agents: a review. Eur Polymer J 72:602–619

    Article  Google Scholar 

  • Nigam S, Sakoda A, Wang H (1988) Bioproduct recovery from unclarified broths and homogenates using immobilized adsorbents. Biotechnol Prog 4(3):166–172

    Article  Google Scholar 

  • Nijenhuis A, Colstee E, Grijpma D et al (1996) High molecular weight poly(L-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer J 37(26):5849–5857

    Article  Google Scholar 

  • Nuttelman C, Mortisen D, Henry S et al (2001) Attachment of fibronectin to poly (vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. J Biomed Mater Res 57(2):217–223

    Article  Google Scholar 

  • Olivier J (2005) Drug transport to brain with targeted nanoparticles. NeuroRx 2(1):108–119

    Article  Google Scholar 

  • Ong S-Y, Wu J, Moochhala S et al (2008) Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials 29(32):4323–4332

    Article  Google Scholar 

  • Ouchi T, Saito T, Kontani T et al (2004) Encapsulation and/or release behavior of bovine serum albumin within and from polylactide-grafted dextran microspheres. Macromol Biosci 4(4):458–463

    Article  Google Scholar 

  • Pangburn S, Trescony P, Heller J (1982) Lysozyme degradation of partially deacetylated chitin, its films and hydrogels. Biomaterials 3(2):105–108

    Article  Google Scholar 

  • Park H, Park K (1996) Hydrogels in bioapplications. In: Ottenbrite R, Huang S, Kinam P (eds) Hydrogels and biodegradable polymers for bioapplications. ACS symposium series, vol 627. American Chemical Society, Washington, pp 2–10

    Google Scholar 

  • Park K, Xanthos M (2009) A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym Degrad Stab 94(5):834–844

    Article  Google Scholar 

  • Park T, Cohen S, Langer R (1992) Poly(L-lactic acid)/pluronic blends: characterization of phase separation behavior, degradation, and morphology and use as protein-releasing matrixes. Macromolecules 25(1):116–122

    Article  Google Scholar 

  • Park T, Lu W, Crotts G (1995) Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly (d, l-lactic acid-co-glycolic acid) microspheres. J Control Release 33(2):211–222

    Article  Google Scholar 

  • Patenaude M, Smeets N, Hoare T (2014) Designing injectable, covalently cross-linked hydrogels for biomedical applications. Macromol Rapid Commun 35(6):598–617

    Article  Google Scholar 

  • Pavinatto F, Caseli L, Oliveira O (2010) Chitosan in nanostructured thin films. Biomacromolecules 11(8):1897–1908

    Article  Google Scholar 

  • Peppas N, Hilt J, Khademhosseini A et al (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360

    Article  Google Scholar 

  • Perego G, Cella G, Bastioli C (1996) Effect of molecular weight and crystallinity on poly (lactic acid) mechanical properties. J Appl Polym Sci 59(1):37–43

    Article  Google Scholar 

  • Peters R, Lebouille J, Plum B et al (2011) Hydrolytic degradation of poly (d, l-lactide-co-glycolide 50/50)-di-acrylate network as studied by liquid chromatography–mass spectrometry. Polym Degrad Stab 96(9):1589–1601

    Article  Google Scholar 

  • Petka W, Harden J, McGrath K et al (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281(5375):389–392

    Article  Google Scholar 

  • Pişkin E, Kaitian X, Denkbaş E et al (1995) Novel PDLLA/PEG copolymer micelles as drug carriers. J Biomater Sci Polym Ed 7(4):359–373

    Article  Google Scholar 

  • Pluta M, Galeski A, Alexandre M et al (2002) Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties. J Appl Polym Sci 86(6):1497–1506

    Article  Google Scholar 

  • Ramzi A, Azzam A, Nor O et al (2015) Recent applications of polylactic acid in pharmaceutical and medical industries. J Chem Pharm Res 7(12):51–63

    Google Scholar 

  • Rane K, Hoover D (1993) Production of chitosan by fungi. Food Biotechnol 7(1):11–33

    Article  Google Scholar 

  • Ratner B (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Elsevier Academic Press, Amsterdam, Boston

    Google Scholar 

  • Rezwan K, Chen Q, Blaker J et al (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    Article  Google Scholar 

  • Romero-Cano M, Vincent B (2002) Controlled release of 4-nitroanisole from poly(lactic acid) nanoparticles. J Control Release 82(1):127–135

    Article  Google Scholar 

  • Rowley J, Madlambayan G, Mooney D (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20(1):45–53

    Article  Google Scholar 

  • Roy N, Saha N, Humpolicek P et al (2010a) Permeability and biocompatibility of novel medicated hydrogel wound dressings. Soft Mater 8(4):338–357

    Article  Google Scholar 

  • Roy N, Saha N, Kitano T et al (2010b) Development and characterization of novel medicated hydrogels for wound dressing. Soft Mater 8(2):130–148

    Article  Google Scholar 

  • Roy N, Saha N, Kitano T et al (2010c) Novel hydrogels of PVP–CMC and their swelling effect on viscoelastic properties. J Appl Polym Sci 117(3):1703–1710

    Google Scholar 

  • Rudin A, Choi P (2013) Biopolymers. In: Choi AR (ed) The elements of polymer science & engineering, 3rd edn. Academic Press, Boston, pp 521–535

    Chapter  Google Scholar 

  • Saha N, Saarai A, Roy N et al (2011) Polymeric biomaterial based hydrogels for biomedical applications. J Biomater Nanobiotechno 2(1):85–90

    Article  Google Scholar 

  • Saltzman W, Olbricht W (2002) Building drug delivery into tissue engineering design. Nat Rev Drug Discov 1(3):177–186

    Article  Google Scholar 

  • Sashiwa H, Aiba S-i (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29(9):887–908

    Article  Google Scholar 

  • Schwendeman S (2002) Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit Rev Ther Drug Carrier Syst 19(1):73–98

    Article  Google Scholar 

  • Sefton M, May M, Lahooti S et al (2000) Making microencapsulation work: conformal coating, immobilization gels and in vivo performance. J Control Release 65(1):173–186

    Article  Google Scholar 

  • Segura T, Shea L (2002) Surface-tethered DNA complexes for enhanced gene delivery. Bioconjug Chem 13(3):621–629

    Article  Google Scholar 

  • Şen M, Avcı E (2005) Radiation synthesis of poly (N-vinyl-2-pyrrolidone)–κ-carrageenan hydrogels and their use in wound dressing applications. I. Preliminary laboratory tests. J Biomed Mater Res A 74(2):187–196

    Article  Google Scholar 

  • Seol Y, Lee J, Park Y et al (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26(12):1037–1041

    Article  Google Scholar 

  • Sheth M, Kumar R, Davé V et al (1997) Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci 66(8):1495–1505

    Article  Google Scholar 

  • Siepmann J, Göpferich A (2001) Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Delivery Rev 48(2–3):229–247

    Article  Google Scholar 

  • Simon J, Ricci J, Di Cesare P (1997) Bioresorbable fracture fixation in orthopedics: a comprehensive review. Part II. Clinical studies. Am J Orthop 26(11):754–762

    Google Scholar 

  • Singh M, Shirley B, Bajwa K et al (2001) Controlled release of recombinant insulin-like growth factor from a novel formulation of polylactide-co-glycolide microparticles. J Control Release 70(1–2):21–28

    Article  Google Scholar 

  • Skardal A (2014) Extracellular matrix-like hydrogels for applications in regenerative medicine. In: Connon C, Hamley I (eds) Hydrogels in cell-based therapies, vol 2. The Royal Society of Chemistry, Cambridge, p 250

    Google Scholar 

  • Sudarshan N, Hoover D, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6(3):257–272

    Article  Google Scholar 

  • Sundback C, Hadlock T, Cheney M et al (2003) Manufacture of porous polymer nerve conduits by a novel low-pressure injection molding process. Biomaterials 24(5):819–830

    Article  Google Scholar 

  • Suyatma N, Copinet A, Tighzert L et al (2004) Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. J Polym Environ 12(1):1–6

    Article  Google Scholar 

  • Tabata Y (2003) Tissue regeneration based on growth factor release. Tissue Eng 9(4, Supplement 1):5–15

    Google Scholar 

  • Takagi T, Takahashi K, Aizawa M et al (eds) (1993) In: Proceedings of the first international conference on intelligent materials—ICIM, Lancaster, PA. Technomic Publishing Co., Inc., Kanagawa, Japan

    Google Scholar 

  • Takahashi T, Takayama K, Machida Y et al (1990) Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate. Int J Pharm 61(1–2):35–41

    Article  Google Scholar 

  • Tarek A, Bader A (2016) Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther 10:483–507

    Google Scholar 

  • Taylor M, Daniels A, Andriano K et al (1994) Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater 5(2):151–157

    Article  Google Scholar 

  • Tirrell D (1996) Putting a new spin on spider silk. Science 271(5245):39–40

    Article  Google Scholar 

  • Tomić K, Veeman W, Boerakker M et al (2008) Lateral and rotational mobility of some drug molecules in a poly(ethylene glycol) diacrylate hydrogel and the effect of drug-cyclodextrin complexation. J Pharm Sci 97(8):3245–3256

    Article  Google Scholar 

  • Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18(7):567–575

    Article  Google Scholar 

  • Tsuji H, Ikada Y (1998) Blends of aliphatic polyesters. II. Hydrolysis of solution-cast blends from poly(L-lactide) and poly (ε-caprolactone) in phosphate-buffered solution. J Appl Polym Sci 67(3):405–415

    Google Scholar 

  • VandeVord P, Matthew H, DeSilva S et al (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 59(3):585–590

    Article  Google Scholar 

  • Vårum K, Myhr M, Hjerde R et al (1997) In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res 299(1):99–101

    Article  Google Scholar 

  • Vermonden T, Klumperman B (2015) The past, present and future of hydrogels. Eur Polymer J 72:341–343

    Article  Google Scholar 

  • Vert M, Li S, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3(6):432–446

    Article  Google Scholar 

  • Vert M, Schwarch G, Coudane J (1995) Present and future of PLA polymers. J Macromol Sci, Pure Appl Chem 32(4):787–796

    Article  Google Scholar 

  • Vey E, Miller A, Claybourn M et al (2007) In vitro degradation of poly(lactic-CO2-glycolic) acid random copolymers. Macromol Symp 251(1):81–87

    Article  Google Scholar 

  • Vlugt-Wensink K, Jiang X, Schotman G et al (2006) In vitro degradation behavior of microspheres based on cross-linked dextran. Biomacromol 7(11):2983–2990

    Article  Google Scholar 

  • Wang E, Overgaard S, Scharer J et al (1988) Occlusion immobilization of hybridoma cells in chitosan. Biotechnol Tech 2(2):133–136

    Article  Google Scholar 

  • Wang C, Stewart R, Kopecek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397(6718):417–420

    Article  Google Scholar 

  • Wang Y, Li Y, Pei X et al (2007) Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus. J Biotechnol 129(3):510–515

    Article  Google Scholar 

  • Wani M, Taylor H, Wall M et al (1971) Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93(9):2325–2327

    Article  Google Scholar 

  • Wei J, Hudson S, Mayer J et al (1977) A novel method for crosslinking carbohydrates. J Polym Sci 20:2187–2193

    Google Scholar 

  • Whang K, Tsai DC, Nam EK et al (1998) Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J Biomed Mater Res 42(4):491–499

    Article  Google Scholar 

  • Whitesides GM, Ostuni E, Takayama S et al (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3(1):335–373

    Article  Google Scholar 

  • Williams DF (2009) On the nature of biomaterials. Biomaterials 30(30):5897–5909

    Article  Google Scholar 

  • Winet H, Bao JY (1998) Fibroblast growth factor-2 alters the effect of eroding polylactide-polyglycolide on osteogenesis in the bone chamber. J Biomed Mater Res 40(4):567–576

    Article  Google Scholar 

  • Winter GD, Scales JT (1963) Effect of air drying and dressings on the surface of a wound. Nature 197:91–92

    Article  Google Scholar 

  • Yang J, Tian F, Wang Z et al (2008) Effect of chitosan molecular weight and deacetylation degree on hemostasis. J Biomed Mater Res Part B Appl Biomater 84B(1):131–137

    Article  Google Scholar 

  • Yang X, Yang K, Wu S et al (2010) Cytotoxicity and wound healing properties of PVA/ws-chitosan/glycerol hydrogels made by irradiation followed by freeze–thawing. Radiat Phys Chem 79(5):606–611

    Article  Google Scholar 

  • Ydens I, Rutot D, Degée P et al (2000) Controlled synthesis of poly(ε-caprolactone)-grafted dextran copolymers as potential environmentally friendly surfactants. Macromolecules 33(18):6713–6721

    Article  Google Scholar 

  • Yoo J, Smith L (2004) Involvment of Ca2+/calmodulin-dependent protein kinase II in the spontaneous activation in rat oocytes. Reprod Fertil Dev 17(2):279–280

    Article  Google Scholar 

  • Zacchi V, Soranzo C, Cortivo R et al (1998) In vitro engineering of human skin-like tissue. J Biomed Mater Res 40(2):187–194

    Article  Google Scholar 

  • Zhang I, Shung K, Edwards D (1996) Hydrogels with enhanced mass transfer for transdermal drug delivery. J Pharm Sci 85(12):1312–1316

    Article  Google Scholar 

  • Zhang Z, Ortiz O, Goyal R et al (2013) Biodegradable polymers. In: Ebnesajjad S, Modjarrad K (eds) Handbook of polymer applications in medicine and medical devices. PDL handbook series. Elsevier, Oxford, p 303

    Google Scholar 

  • Zhao Y, Wang Z, Wang J et al (2004) Direct synthesis of poly (D, L-lactic acid) by melt polycondensation and its application in drug delivery. J Appl Polym Sci 91(4):2143–2150

    Article  Google Scholar 

  • Zund G, Breuer C, Shinoka T et al (1997) The in vitro construction of a tissue engineered bioprosthetic heart valve. Eur J Cardiothorac Surg 11(3):493–497

    Article  Google Scholar 

  • Zweers M, Engbers G, Grijpma D et al (2004) In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide). J Control Release 100(3):347–356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Mitrovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mitrovic, A., Muncan, J., Hut, I., Pelemis, S., Colic, K., Matija, L. (2018). Polymeric Biomaterials Based on Polylactide, Chitosan and Hydrogels in Medicine. In: Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K. (eds) Biomaterials in Clinical Practice . Springer, Cham. https://doi.org/10.1007/978-3-319-68025-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68025-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68024-8

  • Online ISBN: 978-3-319-68025-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics