Skip to main content

A Monte Carlo Framework for Low Dose CT Reconstruction Testing

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10557))

Included in the following conference series:

Abstract

We propose a framework using freely available tools for the synthesis of physically realistic CT measurements for low dose reconstruction development and validation, using a fully sampled Monte Carlo method. This allows the generation of test data that has artefacts such as photon starvation, beam-hardening and scatter, that are both physically realistic and not unfairly biased towards model-based iterative reconstruction (MBIR) algorithms. Using the open source Monte Carlo tool GATE and spectrum simulator SpekCalc, we describe how physical elements such as source, specimen and detector may be modelled, and demonstrate the construction of fan-beam and cone-beam CT systems. We then show how this data may be consolidated and used with image reconstruction tools. We give examples with a low dose polyenergetic source, and quantitatively analyse reconstructions against the numerical ground-truth for MBIR with simulated and ‘inverse crime’ data. The proposed framework offers a flexible and easily reproducible tool to aid MBIR development, and may reduce the gap between synthetic and clinical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, L.: Reconstruction, model-based iterative: a promising algorithm for today’s computed tomography imaging. J. Med. Imaging Radiat. Sci. 45(2), 131–136 (2014)

    Article  Google Scholar 

  2. Sidky, E.Y., Kao, C.M., Pan, X.: Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J. X-ray. Sci. Technol. 14(2), 1–30 (2006)

    Google Scholar 

  3. Hu, Z., Liang, D., Xia, D., Zheng, H.: Compressive sampling in computed tomography: method and application. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 748, 26–32 (2014)

    Article  Google Scholar 

  4. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pan, X., Sidky, E.Y., Vannier, M.: Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse Probl. 25, 123009 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kaipio, J., Somersalo, E.: Statistical inverse problems: discretization, model reduction and inverse crimes. J. Comput. Appl. Math. 198(2), 493–504 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nuyts, J., De Man, B., Fessler, J.A., Zbijewski, W., Beekman, F.J.: Modelling the physics in the iterative reconstruction for transmission computed tomography. Phys. Med. Biol. 58(12), R63–R96 (2013)

    Article  Google Scholar 

  9. De Man, B., Basu, S., Chandra, N., Dunham, B., Edic, P., Iatrou, M., McOlash, S., Sainath, P., Shaughnessy, C., Tower, B., Williams, E.: CatSim: a new computer assisted tomography simulation environment, p. 65102G, March 2007

    Google Scholar 

  10. Jia, X., Yan, H., Cerviño, L., Folkerts, M., Jiang, S.B.: A GPU tool for efficient, accurate, and realistic simulation of cone beam CT projections. Med. Phys. 39(12), 7368–7378 (2012)

    Article  Google Scholar 

  11. Jan, S., Benoit, D., Becheva, E., Carlier, T., Cassol, F., Descourt, P., Frisson, T., Grevillot, L., Guigues, L., Maigne, L., Morel, C., Perrot, Y., Rehfeld, N., Sarrut, D., Schaart, D.R., Stute, S., Pietrzyk, U., Visvikis, D., Zahra, N., Buvat, I.: GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys. Med. Biol. 56(4), 881–901 (2011)

    Article  Google Scholar 

  12. Poludniowski, G., Landry, G., DeBlois, F., Evans, P.M., Verhaegen, F.: SpekCalc: a program to calculate photon spectra from tungsten anode X-ray tubes. Phys. Med. Biol. 54(19), N433–N438 (2009)

    Article  Google Scholar 

  13. ICRP Publication 110: Adult reference computational phantoms. Ann. ICRP 39(2), 1 (2009)

    Article  Google Scholar 

  14. Fessler, J.A.: Image Reconstruction Toobox, 14 November 2014

    Google Scholar 

  15. Saloman, E.B., Hubbell, J.H., Scofield, J.H.: X-ray attenuation cross sections for energies 100 eV to 100 keV and elements Z = 1 to Z = 92. At. Data Nucl. Data Tables 38(1), 1–196 (1988)

    Article  Google Scholar 

  16. Chang, Z., Zhang, R., Thibault, J.-B., Sauer, K., Bouman, C.: Statistical X-ray computed tomography imaging from photon-starved measurements. SPIE Comput. Imaging 9020, 90200G (2014)

    Article  Google Scholar 

  17. Elbakri, I.A., Fessler, J.A.: Statistical image reconstruction for polyenergetic X-ray computed tomography. IEEE Trans. Med. Imaging 21(2), 89–99 (2002)

    Article  Google Scholar 

  18. Barrett, J.F., Keat, N.: Artifacts in CT: recognition and avoidance. RadioGraphics 24(6), 1679–1691 (2004)

    Article  Google Scholar 

  19. Sun, M., Star-Lack, J.M.: Improved scatter correction using adaptive scatter kernel superposition. Phys. Med. Biol. 55(22), 6695–6720 (2010)

    Article  Google Scholar 

  20. Perraudin, N., Kalofolias, V., Shuman, D., Vandergheynst, P.: UNLocBoX: A MATLAB convex optimization toolbox for proximal-splitting methods, February 2014

    Google Scholar 

  21. Schneider, U., Pedroni, E., Lomax, A.: The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys. Med. Biol. 41(1), 111–124 (1996)

    Article  Google Scholar 

  22. Siewerdsen, J.H., Jaffray, D.A.: Cone-beam computed tomography with a flat-panel imager: magnitude and effects of x-ray scatter. Med. Phys. 28(2), 220 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Maxwell Advanced Technology Fund, EPSRC DTP studentship funds and ERC project: C-SENSE (ERC-ADG-2015-694888). MD is also supported by a Royal Society Wolfson Research Merit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan H. Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mason, J.H., Nailon, W.H., Davies, M.E. (2017). A Monte Carlo Framework for Low Dose CT Reconstruction Testing. In: Tsaftaris, S., Gooya, A., Frangi, A., Prince, J. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2017. Lecture Notes in Computer Science(), vol 10557. Springer, Cham. https://doi.org/10.1007/978-3-319-68127-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68127-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68126-9

  • Online ISBN: 978-3-319-68127-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics