Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10598))

Abstract

We use deductive verification to show safety properties for the railway operations of Deutsche Bahn. We formalize and verify safety properties for a precise, comprehensive model of operational procedures as specified in the rule books, independently of the shape and size of the actual network layout and the number or schedule of trains. We decompose a global safety property into local properties as well as compositionality and well-formedness assumptions. Then we map local state-based safety properties into history-based properties that can be proven with a high degree of automation using deductive verification. We illustrate our methodology with the proof that for any well-formed infrastructure operating according to the regulations of Deutsche Bahn the following safety property holds: whenever a train leaves a station, the next section is free and no other train on the same line runs in the opposite direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We do not give a proof for this, as this property follows directly from well-formed infrastructure and that the adding of the token at one end is synchronized to happen after its removal at the other end.

  2. 2.

    The model, invariants and KeY-ABS and instructions to compile are available under http://formbar.raillab.de/en/publications-and-tools/latest/.

References

  1. Beckert, B., Hähnle, R.: Reasoning and verification. IEEE Intell. Syst. 29(1), 20–29 (2014)

    Article  Google Scholar 

  2. Cappart, Q., Limbrée, C., Schaus, P., Legay, A.: Verification by discrete simulation of interlocking systems. In: 29th Annual European Simulation and Modelling Conference ESM, pp. 402–409 (2015)

    Google Scholar 

  3. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: a tool for checking the refinement of temporal contracts. In: 28th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 702–705 (2013)

    Google Scholar 

  4. DB Netz AG, Frankfurt, Germany: Richtlinie 408, Fahrdienstvorschrift (2017)

    Google Scholar 

  5. DB Netz AG, Frankfurt, Germany: Richtlinie 819, LST-Anlagen planen (2017)

    Google Scholar 

  6. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for the concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 517–526. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6_35

    Chapter  Google Scholar 

  7. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared futures. Formal Aspects Comput. 27(3), 551–572 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fantechi, A., Flammini, F., Gnesi, S.: Formal methods for railway control systems. STTT 16(6), 643–646 (2014)

    Article  Google Scholar 

  9. Flores-Montoya, A.E., Albert, E., Genaim, S.: May-Happen-in-Parallel based deadlock analysis for concurrent objects. In: Beyer, D., Boreale, M. (eds.) FMOODS/FORTE -2013. LNCS, vol. 7892, pp. 273–288. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38592-6_19

    Chapter  Google Scholar 

  10. Hähnle, R.: The abstract behavioral specification language: a tutorial introduction. In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2012. LNCS, vol. 7866, pp. 1–37. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40615-7_1

    Chapter  Google Scholar 

  11. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. SIGPLAN Not. 43(1), 273–284 (2008)

    Article  MATH  Google Scholar 

  12. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25271-6_8

    Chapter  Google Scholar 

  13. Kamburjan, E., Din, C.C., Chen, T.-C.: Session-based compositional analysis for actor-based languages using futures. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 296–312. Springer, Cham (2016). doi:10.1007/978-3-319-47846-3_19

    Chapter  Google Scholar 

  14. Kamburjan, E., Hähnle, R.: Uniform modeling of railway operations. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2016. CCIS, vol. 694, pp. 55–71. Springer, Cham (2017). doi:10.1007/978-3-319-53946-1_4

    Chapter  Google Scholar 

  15. Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of railway interlocking - compositional approach with OCRA. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 134–149. Springer, Cham (2016). doi:10.1007/978-3-319-33951-1_10

    Google Scholar 

  16. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional verification of multi-station interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 279–293. Springer, Cham (2016). doi:10.1007/978-3-319-47169-3_20

    Chapter  Google Scholar 

  17. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional model checking of interlocking systems for lines with multiple stations. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 146–162. Springer, Cham (2017). doi:10.1007/978-3-319-57288-8_11

    Chapter  Google Scholar 

  18. Pachl, J.: Systemtechnik des Schienenverkehrs: Bahnbetrieb Planen, Steuern und Sichern. Springer Vieweg, Berlin (2008)

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their constructive and valuable feedback. This work is supported by FormbaR, “Formalisierung von betrieblichen und anderen Regelwerken”, part of AG Signalling/DB RailLab in the Innovation Alliance of Deutsche Bahn AG and TU Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Kamburjan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kamburjan, E., Hähnle, R. (2017). Deductive Verification of Railway Operations. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2017. Lecture Notes in Computer Science(), vol 10598. Springer, Cham. https://doi.org/10.1007/978-3-319-68499-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68499-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68498-7

  • Online ISBN: 978-3-319-68499-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics