Skip to main content

Termites and Indian Agriculture

  • Chapter
  • First Online:
Termites and Sustainable Management

Abstract

Termites are the most dominant arthropod decomposers in the tropical forests and show high diversity and abundance. Within tropical ecosystems, they play a key role in modifying the biotic and abiotic environment. The areas of higher altitudes and extreme temperatures have restricted the distribution of termite fauna in India. The species richness is more in the north-eastern regions, compared to rest of India. Out of 337 species of termites known so far from India, about 35 have been reported damaging agricultural crops and buildings. Odontotermes is the major mound-builder, whereas Coptotermes, Heterotermes, Microtermes, Microcerotermes and Trinervitermes are the major subterranean genera occurring in India.

The losses caused amount to several hundred million of rupees per year. Termites damage crops from sowing till harvest, and it is difficult to detect damage in the field. Usually it is too late when the symptoms are noticed. In general, termite damage is seen more (20–25%) in rain-fed crops than irrigated ones (10%). Perennial crops are usually attacked during dry seasons and annual crops towards harvest time. Termite infestations have been reported in fruit crops, sugarcane, cotton, paddy, maize, pearl millet, pulses, citrus, vegetables, spices, groundnut and potato in arid zones of India.

Indian agriculture depends on unpredictable rains and is dominated by small and marginal farmers, with meagre resource amounts for insect pest management. The majority of farmers follow the age old practices for management of insect pests. The crop and species diversity often makes the issue more complicated. India is divided into 15 agroclimatic zones. Technologies need to be developed for each zone separately, as no single technology would be effective for all of them. Termite control is a herculean task and is not an advisable option, and management in cropped areas should be our goal. Complete elimination or prevention of termites is neither feasible nor advisable, as their complex biology in many regards poses complications in devising management strategies. Optimistically, prospects for the development of new or improved technologies as well as public acceptance of alternative management appear good. Least toxic and nonchemical methods have been and will continue to be developed. In this chapter we discuss issues related to Indian agriculture and the contemporary practices, being followed by the majority of Indian farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agarwala, S. B. D. (1955). Control of sugarcane termites (1946–1953). Journal of Economic Entomology, 48, 533–537.

    Article  CAS  Google Scholar 

  • Altson, R. A. (1947). A fungus parasitic on Coptotermes curvignathus, Holmgr. Nature, 160, 120.

    Article  Google Scholar 

  • Beeson, C. F. C. (1941). A guide to the control of termites for forest officers. Indian Forest Records (New Series) Entomology, 4, 44–90.

    Google Scholar 

  • Bignell, D. E., & Eggleton, P. (2000). Termites in ecosystems. In T. Abe, M. Higashi, & D. E. Bignell (Eds.), Termites: Evolution, sociality, symbioses, ecology (p. 466). Dordrecht: Springer.

    Google Scholar 

  • Bose, G. (1984). Termite fauna of southern India. Rec. Zoological Survey of India, Occasional paper, 49, 1–270

    Google Scholar 

  • Boue, S. M., & Raina, A. K. (2003). Effects of plant flavonoids on fecundity, survival, and feeding of the Formosan subterranean termite. Journal of Chemical Ecology, 29, 2575–2584.

    Article  CAS  PubMed  Google Scholar 

  • Brown, K. W. (1962). Termite control research in Uganda with particular reference to control of attacks in eucalyptus plantations (p. 9). Eighth British commonwealth forestry conference, Entebbe, Government Publication, Uganda Protectorate.

    Google Scholar 

  • Carta, L. K., & Osbrink, W. (2005). Rhabditis rainai n. sp. (Nematoda: Rhabditida) associated with the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Nematology, 7, 863–879.

    Article  Google Scholar 

  • Carta, L. K., Handoo, Z. A., Lebedeva, N. I., Raina, A., Zhuginisov, T. I., & Khamraev, A. S. (2010). Pelodera termitis sp. n. and two other rhabditid nematode species associated with the Turkestan termite Anacanthotermes turkestanicus from Uzbekistan. International Journal of Nematology, 20, 125–134.

    Google Scholar 

  • Chai, Y. Q. (1995). Preliminary studies on the pathogenicity of some entomopathogenous fungi to Coptotermes formosanus. Chinese Journal of Biological Control, 11, 68–69.

    Google Scholar 

  • Cheng, S. S., Wu, C. L., Chang, H. T., Kao, Y. T., & Chang, S. T. (2004). Antitermitic and antifungal activities of essential oil of Calocedrus formosana leaf and its composition. Journal of Chemical Ecology, 30, 1957–1967.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, S. S., Chang, H. T., Wu, C. L., & Chang, S. T. (2007). Anti-termitic activities of essential oils from coniferous trees against Coptotermes formosanus. Bioresource Technology, 98, 456–459.

    Article  CAS  PubMed  Google Scholar 

  • Chhotani, O. B. (1977). A review of taxonomy of Indian termites. Records of the Zoological Survey of India, 9, 1–36.

    Google Scholar 

  • Chhotani, O. B. (1980). Termite pests of agriculture in Indian region and their control. Technical Monograph, 4, 1–84.

    Google Scholar 

  • Chhotani, O. B. (1997). The fauna of India and the adjacent countries. Isoptera (Termites): (family Termitidae). Zoological Survey of India, 2, 750–800.

    Google Scholar 

  • Chouvenc, T., & Su, N. Y. (2010). Apparent synergy among defense mechanisms in subterranean termites (Rhinotermitidae) against epizootic events – The limits and potential for biological control. Journal of Economic Entomology, 103, 1327–1337.

    Article  PubMed  Google Scholar 

  • Chouvenc, T., Su, N. Y., & Robert, A. (2009a). Inhibition of Metarhizium anisopliae in the alimentary tract of the eastern subterranean termite Reticulitermes flavipes. Journal of Invertebrate Pathology, 101, 130–136.

    Article  CAS  PubMed  Google Scholar 

  • Chouvenc, T., Su, N. Y., & Robert, A. (2009b). Cellular encapsulation in the eastern subterranean termite, Reticulitermes flavipes (Isoptera), against infection by the entomopathogenic fungus, Metarhizium anisopliae. Journal of Invertebrate Pathology, 101, 234–241.

    Article  PubMed  Google Scholar 

  • Christie, J. R. (1941). Life history. General discussion. In An introduction to nematology (pp. 243–372). Section II. Chapters IV–XI.

    Google Scholar 

  • Coghlan, A. (2004). Green pesticide is irresistible to ants. New Scientist, 184, 26.

    Google Scholar 

  • Collins, N. M. (1983). Termite populations and their role in litter removal in Malaysian rain forests. In S. L. Sutton, T. C. Whitmore, & A. C. Chadwick (Eds.), Tropical rain forest: Ecology and management (pp. 311–325). Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Cornelius, M. L., Grace, J. K., & Yates, J. R. (1997). Toxicity of monoterpenoids and other natural products to the formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 87, 705–708.

    Article  Google Scholar 

  • Cunha, H. F., & Orlando, T. Y. S. (2011). Functional composition of termite species in areas of abandoned pasture and in secondary succession of the parque estadual altamiro de moura pacheco, goiás, Brazil. Bioscience Journal Uberlândia, 27, 986–992.

    Google Scholar 

  • Danthanarayana, W., & Vitarana, S. L. (1987). Control of the live wood tea termite. Glyptotermes dilatatus using Heterorhabditis sp. (Nemat.) Agriculture Ecosystems and Environment, 19, 333–342.

    Article  Google Scholar 

  • Das, G. M. (1965). Pests of tea in North East India and their control (p. 115). Memorandum No 27, Tocklai Experimental Station, Jorhat.

    Google Scholar 

  • Davies, R. G., Hernandez, L. M., Didham, R. K., Fagan, L. L., & Winchester, N. N. (2003). Environmental and spacial influences upon species composition of a termite assemblage across neotropical forest islands. Journal of Tropical Ecology, 19, 509–524.

    Article  Google Scholar 

  • DeBach, P. H., & McOmie, W. A. (1939). New diseases of termites caused by bacteria. Annals of the Entomological Society of America, 32, 37–146.

    Google Scholar 

  • DeBlauwe, I., Dibog, L., Missoup, A. D., Dupain, J., Van Elsacker, L., Dekoninck, W., Bonte, D., & Hendrickx, F. (2008). Spatial scales affecting termite diversity in tropical low land rainforest: A case study in southeast Cameroon. African Journal of Ecology, 46, 5–18.

    Article  Google Scholar 

  • Devi, K. K. (2013). Investigations on cyanide producing Pseudomonas bacterial species and their potential for application against termite Odontotermes obesus. University of Delhi.

    Google Scholar 

  • Devi, K. K., & Kothamasi, D. (2009). Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain. FEMS Microbiology Letters, 300, 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Devi, K. K., Seth, N., Kothamasi, S., & Kothamasi, D. (2007). Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in Vitro Conditions. Current Microbiology, 54, 74–78.

    Article  CAS  PubMed  Google Scholar 

  • Divya, K., & Sankar, M. (2009). Entomopathogenic nematodes in pest management. Indian Journal of Science and Technology, 2, 53–60.

    Google Scholar 

  • Dong, C., Zhang, J., Huang, H., Chen, W., & Hu, Y. (2009). Pathogenicity of a new China variety of Metarhizium anisopliae (M. anisopliae var.dcjhyium) to subterranean termite Odontotermes formosanus. Microbiological Research, 164, 27–35.

    Article  CAS  PubMed  Google Scholar 

  • Doolittle, M., Raina, A., Lax, A., & Boopathy, R. (2007). Effect of natural products on gut microbes in Formosan subterranean termite, Coptotermes formosanus. International Biodeterioration and Biodegradation, 59, 69–71.

    Article  CAS  Google Scholar 

  • Edwards, W., & Mill, A. E. (1986). Termites in buildings. Their biology and control. East Grinstead: Rentokil Limited.

    Google Scholar 

  • EL-Bassiouny, A. R., & El-Rahman, R. M. A. (2011). Susceptibility of egyptian subterranean termite to some entomopathogenic nematodes. Egyptian Journal of Agricultural Research, 89, 121–135.

    Google Scholar 

  • Feakin, S. D. (1973). Pest control in groundnuts. PANS Manual No. 2 COPR, Foreign & Common. London: Office, Overseas Development Administration.

    Google Scholar 

  • Fokialakis, N., Osbrink, W. L., Mamonov, L. K., Gemejieva, N. G., Mims, A. B., Skaltsounis, A. L., Lax, A. R., & Cantrell, C. L. (2006). Antifeedant and toxicity effects of thiophenes from four Echinops species against the Formosan subterranean termite, Coptotermes formosanus. Pest Management Science, 62, 832–838.

    Article  CAS  PubMed  Google Scholar 

  • Freise, F. (1949). A significação de formigas e cupins nas matas tropicais e capoeiras. Observa- ções feitas nas florestas litorâneas do Brasil. Annl Brasil Econ Forestal, 2, 145–154.

    Google Scholar 

  • Gadhiya, V. C., & Borad, P. K. (2013). Effect of insecticidal seed treatment on reduction of termite damage and increase in wheat yield. Pesticide Research Journal, 25, 87–89.

    CAS  Google Scholar 

  • Ganapaty, S., Thomas, P. S., Fotso, S., & Laatsch, H. (2004). Antitermitic quinones from Diospyros sylvatica. Phytochemistry, 65, 1265–1271.

    Article  CAS  PubMed  Google Scholar 

  • Gangwar, S. K., Tewari, R. K., & Lakshman, L. (2003, August 22–24). Monitoring of insect pest incidence, yield losses and their management in late planted sugarcane. In Proceedings of the 65th Annual Convention of the Sugar Technologists’ Association of India (pp. A186–A195). Bhubaneshwar.

    Google Scholar 

  • GEI. (2005). Demonstration project of alternatives to chlordane and mirex for termite control in China. Bejing: Guangdong Entomological Institute. From The World Bank. http://web.worldbank.org/external/projects

  • Georgis, R., Poinar, G. O., Jr., & Wilson, A. P. (1982). Susceptibility of dampwood termites and soil and wood-dwelling termites to the entomogenous nematode Neoplectana carpocapsae. International Research Communications Systems Medical Science: Microbiology Parasitology Infectious Diseases, 10, 563.

    Google Scholar 

  • Giridhar, G., Vesudevan, S., & Vesudevan, P. (1988). Antitermites properties of Calotropis latex. Pesticides, 22, 31–33.

    Article  Google Scholar 

  • Glare, T. R., & Milner, R. J. (1991). Ecology of entomopathogenic fungi. In D. K. Arora, K. G. Mukerji, & P. JGE (Eds.), Handbook of applied mycology, Humans, animals, and insects (Vol. 2, pp. 547–612). New York: Dekker.

    Google Scholar 

  • Grace, J. K. (1994). Protocol for testing effects of microbial pest control agents on nontarget subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 87, 269–274.

    Article  Google Scholar 

  • Grace, J. K. (1997). Biological control strategies for suppression of termites. Journal of Agricultural Entomology, 14, 281–289.

    Google Scholar 

  • Grace, J. K., & Yates, J. R. (1992). Behavioural effects of a neem insecticide on Coptotermes formosanus (Isoptera: Rhinotermitidae). Tropical Pest Management, 38, 176–180.

    Article  Google Scholar 

  • Grace, J. K., Goodell, B. S., Jones, W. E., Chandhoke, V., & Jellison, J. (1992). Inhibition of termite feeding by fungal siderophores (pp. 1–4). The International Research Group on Wood Preservation. Document No: IRGAVP/1558-92. Biological Problems (Fauna).

    Google Scholar 

  • Grewal, P. S., Nardo, E. D., & Aguillera, M. M. (2001). Entomopathogenic nematodes: Potential for exploration and use in South America. Neotropical Entomology, 30, 191–205.

    Article  Google Scholar 

  • Gurusubramanian, G., Sarmah, M., Rahman, A., Roy, S., & Bora, S. (2008). Pesticide usage pattern in tea ecosystem, their retrospects and alternative measures: A review. Journal of Environmental Biology, 29, 813–826.

    CAS  PubMed  Google Scholar 

  • Handoo, Z. A., Lebedeva, N. A., Carta, L. K., Khamraev, A. S., Zhuginisov, T. I., & Raina, A. K. (2005, October 16–22). A new species of Caenorhabditis (Nematoda: Rhabditida) found associated with termites (Anacanthotermes turkestanicus) in Uzbekistan. In Proceedings of International workshop on termites of central Asia: Biology, Ecology and Control (p. 38). Tashkent.

    Google Scholar 

  • Harazono, K., Yamashita, N., Shinzato, N., Watanabe, Y., Fukatsu, T., & Kurane, R. (2003). Isolation and characterization of aromatics-degrading microorganisms from the gut of the lower termite Coptotermes formosanus. Bioscience, Biotechnology, and Biochemistry, 67, 889–892.

    Article  CAS  PubMed  Google Scholar 

  • Harris, W. V. (1969). Termites as pests of crops and trees. Commonwealth Institute of Entomology HDRA – the organic organisation: Termite control without chemicals. www.gardenorganic.org.uk/pdfs/international_programme/Termite.pdf

  • Harris, W. V. (1971). Termites, their recognition and control (2nd ed.pp. 15–32). London: Longman Publishers.

    Google Scholar 

  • Henderson, G. (2007). Effect of Aspergillus flavus and Trichoderma harzianum on survival of Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology, 49, 135–141.

    Google Scholar 

  • Hiranwrongwera, C., Adisettakul, P., Tansirichaiya, S., Piyabun, O., & Somsuk, V. (2007, November 1–3). Efficiency of a nematode (Steinernema carpocapsae) and its symbiotic bacterium (Xenorhabdus nematophila) at eliminating the termite Coptotermes curvignathus that infests para rubber (Hevea brasiliensis). The 5th international symposium on biocontrol and biotechnology (p. 90). Nong Khai Campus, Nong Khai: Khon Kaen University.

    Google Scholar 

  • Howse, P. E. (1970). Termite: A study in social behaviour (pp. 25–29). West Sussex: Rentokil Ltd. 163–176.

    Google Scholar 

  • Hussain, M. A. (1935). Pests of wheat crop in India. In Proceedings of the worlds grain exhibition and conference (Vol. 2, pp. 562–564).

    Google Scholar 

  • Husseneder, C., & Grace, J. K. (2005). Genetically engineered termite gut bacteria (Enterobacter cloacae) deliver and spread foreign genes in termite colonies. Applied Microbiology and Biotechnology, 68, 360–367.

    Article  CAS  PubMed  Google Scholar 

  • Isman, M. B. (2000). Plant essential oils for pest and disease management. Crop Protection, 19, 10603–10608.

    Article  Google Scholar 

  • Jaipal, S., & Chaudhary, O. P. (2010). Imidacloprid as an effective insecticide against termites infesting sugarcane crop. Indian Journal of Sugarcane Technology, 25, 54–57.

    Google Scholar 

  • Jaipal, S., & Singh, D. (2003). Bioefficacy of imidachlopirid and amrutgard against termites and shoot borer in sugarcane crop. Indian Sugar, 59, 709–716.

    Google Scholar 

  • James, R. R. (2009). Microbial control for invasive arthropod pests of honey bees. In A. E. Hajek, T. R. Glare, & M. O’Callaghan (Eds.), Use of microbes for control and eradication of invasive arthropods (pp. 271–288). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Jarrold, S. L., Moore, D., Potter, U., & Charnley, A. K. (2007). The contribution of surface waxes to pre-penetration growth of an entomopathogenic fungus on host cuticle. Mycological Research, 111, 240–249.

    Article  PubMed  Google Scholar 

  • Jayanthi, M., Singh, K. M., & Singh, R. N. (1993). Succession of insect pest on high yielding groundnut variety under Delhi conditions. Indian Journal of Entomology, 55, 24–29.

    Google Scholar 

  • Johnson, R. A., Lamb, R. W., & Wood, T. G. (1981). Termite damage and crop loss studies in Nigeria a survey to groundnuts. Tropical Pest Management, 27, 325–342.

    Article  Google Scholar 

  • Joshi, P. K., Singh, N. P., Singh, N. N., Gerpacio, R. V., & Pingali, P. L. (2005). Maize in India: Production systems, constraints, and research priorities (p. 42). Mexico: CIMMYT.

    Google Scholar 

  • Kanzaki, N., Giblin-Davis, R. M., Scheffrahn, R. H., & Center, B. J. (2009a). Poikilolaimus floridensis n. sp. (Rhabditida: Rhabditidae) associated with termites (Kalotermitidae). Nematology, 11, 203–216.

    Article  Google Scholar 

  • Kanzaki, N., Giblin-Davis, R. M., Scheffrahn, R. H., Center, B. J., & Davies, K. A. (2009b). Pseudaphelenchus yukiae n. gen., n. sp. (Tylenchina: Aphelenchoididae) associated with Cylindrotermes macrognathus (Termitidae: Termitinae) in La Selva, Costa Rica. Nematology, 11, 869–881.

    Article  Google Scholar 

  • Kanzaki, N., Giblin-Davis, R. M., Herre, E. A., Scheffrahn, R. H., & Center, B. J. (2010). Pseudaphelenchus vindai n. sp. (Tylenchomorpha: Aphelenchoididae) associated with termites (Termitidae) in Barro Colorado Island, Panama. Nematology, 12, 905–914.

    Article  Google Scholar 

  • Kanzaki, N., Li, H. F., Lan, Y. C., Kosaka, G.-D. R. M., & Center, B. J. (2011). Poikilolaimus carsiops n. sp. (Rhabditida: Rhabditidae) associated with Neotermes koshunensis (Kalotermitidae) in Kenting National Park, Taiwan. Nematology, 13, 155–164.

    Article  Google Scholar 

  • Kanzaki, N., Li, H. F., Lan, Y. C., & Giblin-Davis, R. M. (2014). Description of two Pseudaphelenchus species (Tylenchomorpha: Aphelenchoididae) associated with Asian termites and proposal of Tylaphelenchinae n. subfam. Nematology, 16, 963–978.

    Article  Google Scholar 

  • Kashyap, R. K., Verma, A. N., & Bhanot, J. P. (1984). Termites of plantation crops, their damage and contol. Journal of Plantation Crops, 12, 1–10.

    Google Scholar 

  • Kaushal, P. K., & Deshpande, R. R. (1967). Losses to groundnut by termites. JNKVV Research Journal, 92–93.

    Google Scholar 

  • Khan, K. I., Fazal, Q., & Jafari, R. H. (1977). Pathogenicity of locally discovered Bacillus thuringiensis strain to the termites Heterorhabditis indica (Wassman) and Microtermes championi (Snyder). Pakistan Journal of Scientific Research, 29, 12–13.

    Google Scholar 

  • Khan, H. K., Jayaraj, S., & Gopalan, M. (1993). Muscardine fungi for the biological control of agroforestry termite Odontotermes obesus (Rambur). Insect Science and Its Application, 14, 529–535.

    Google Scholar 

  • Khucharoenphaisan, K., Sripairoj, N., & Sinma, K. (2012). Isolation and identification of actinomycetes from termite's gut against human pathogen. Asian Journal of Animal and Veterinary, 7, 68–73.

    Article  Google Scholar 

  • Kramm, K. R., & West, D. F. (1982). Termite pathogens: Effects of ingested Metarhizium, Beauveria, and Gliocladium conidia on worker termites (Reticulitermes sp.) Journal of Invertebrate Pathology, 40, 7–11.

    Article  Google Scholar 

  • Krishna, K., & Weesner, F. M. (1970). Taxonomy, phylogeny and distribution. In K. Krishna & F. M. Weesner (Eds.), Biology of termites (p. 643). New York: Academic.

    Google Scholar 

  • Kumar, N. G. (1991). Studies on the ecology of subterranean termite, Odontotermes hornii (Wasmann) (Isoptera: Termitidae) and its foraging effect on nutrient status. Ph.D. thesis, University of Agricultural Sciences, Bangalore. (p. 254).

    Google Scholar 

  • Kumar, C. T. A., & Veeresh, G. K. (1990). Foraging activity of the subterranean termite Microtermes obesi Holmgren (Termitidae: Isoptera). In G. K. Veeresh, B. Mallik, & C. A. Viraktamath (Eds.), Social insects and the environment: Proceedings of the 11th international congress of IUSSI, 1990 (International Union for the Study of Social Insects): 575. Leiden: E.J. Brill, xxxi + 765 pp.

    Google Scholar 

  • Kumawat, K. C. (2001). Evaluation of some insecticides against field termites, Odontotermes obesus and Microtermes obesi in wheat, Triticum aestivum. Annals of Plant Protection Sciences, 9, 51–53.

    Google Scholar 

  • Lenz, M., & Runko, S. (1992). Use of microorganisms to control colonies of the coconut termite Neotermes rainbowi (Hill) on Vaitupu, Tuvalu (p. 47). Commonwealth Scientific and Industrial research Organisation, Division of Entomology, Termite Group Report No. 92/16.

    Google Scholar 

  • Lenz, M., Kamath, M. K., Lal, S., & Senivasa, E. (2000). Status of the tree-damaging Neotermes sp. in Fiji’s American mahogany plantation and preliminary evaluation of the use of entomopathogens for their control. ACIAR Small Project No. FST/96/205, Project Report (in part).

    Google Scholar 

  • Lobry de Bruyns, L. A., & Conacher, A. J. (1990). The role of termites and ants in soil modification: A review. Australian Journal of Soil Research, 28, 55–93.

    Google Scholar 

  • Logan, J. W. M., Cowie, R. H., & Wood, T. G. (1990). Termite (Isoptera) control in agriculture and forestry by non-chemical methods: A review. Bulletin of Entomological Research, 80, 309–330.

    Article  Google Scholar 

  • Madan, Y. P., Singh, M., & Singh, M. (1998). Evaluation of some soil insecticides for termites and shoot borer control in sugarcane. Indian Sugar, 49, 515–518.

    Google Scholar 

  • Maistrello, L., Henderson, G., & Laine, R. A. (2001). Effects of nootkatone and a borate compound on formosan subterranean termite (Isoptera: Rhinotermitidae) and its symbiont protozoa. Journal of Entomological Science, 36, 229–236.

    Article  CAS  Google Scholar 

  • Maistrello, L., Henderson, G., & Laine, R. A. (2003). Comparative effects of vetiver oil, nootkatone and disodium octaborate tetrahydrate on Coptotermes formosanus and its symbiotic fauna. Pest Management Science, 59, 58–68.

    Article  CAS  PubMed  Google Scholar 

  • Maiti, P. K., & Maiti, P. (2011). Biodiversity: Peril and Preservation (p. 537). New Delhi: PHI Learning.

    Google Scholar 

  • Maniania, N. K., Ekesi, S., & Songa, J. M. (2002). Managing termites in maize with the entomopathogenic fungus Metarhizium anisopliae. Insect Science and Its Application, 22, 41–46.

    Google Scholar 

  • Mao, L., Henderson, G., Bourgeois, W. J., Vaughn, J. A., & Laine, R. A. (2006). Vetiver oil and nootkatone effects on the growth of pea and citrus. Industrial Crops and Products, 23, 327–332.

    Article  CAS  Google Scholar 

  • Massey, C. L. (1971). Two new genera of nematodes parasitic in the eastern subterranean termite, Reticulitermes flavipes. Journal of Invertebrate Pathology, 17, 238–242.

    Article  CAS  PubMed  Google Scholar 

  • Mauldin, J. K., & Beal, R. H. (1989). Entomogenous nematodes for control of subterranean termites, Reticulitermes sp. (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 82, 1638–1642.

    Article  Google Scholar 

  • McDonald, D. (1970). Fungal infection of groundnut fruit after maturity and during drying. Transactions of the British Mycological Society, 54, 461–472.

    Article  Google Scholar 

  • Merrill, J. H., & Ford, A. L. (1916). Life history and habits of two new nematodes parasitic on insects. Journal of Agricultural Research, 6, 115–127.

    Google Scholar 

  • Milner, R. J. (2000). Current status of Metarhizium as a mycoinsecticide in Australia. Biocontrol News and Information, 21, 47N–50N.

    Google Scholar 

  • Milner, R. J. (2003). Application of biological control agents in mound building termites (Isoptera: Termitidae) – Experiences with Metarhizium in Australia. Sociobiology, 41, 419–428.

    Google Scholar 

  • Milner, R. J., Staples, J. A., & Lutton, G. G. (1998). The selection of an isolate of the hyphomycete fungus, Metarhizium anisopliae, for control of termites in Australia. Biological Control, 11, 240–247.

    Article  Google Scholar 

  • Mohapatra, H. K., Padhi, J., Samalo, A. P., & Patra, G. J. (1995). Screening promising groundnut varieties against termite damage at Bhubaneshwar, Orissa, India. IAN, 15, 59–60.

    Google Scholar 

  • MRP (2010) Maxwell Robinson Phelps Termite Report. Maxwell, Robinson and Phelps. http://www.pestcontrol-perth.com/wp-content/uploads/2010/06/Maxwell-Robinson-Phelps-MRP-Termite-Report.pdf

  • Murugan, K., & Vasugi, C. (2011). Combined effect of Azadirachta indica and the entomopathogenic nematode Steinernema glaseri against subterranean termite, Reticulitermes flavipes. Journal of Entomological and Acarological Research, 43, 253–259.

    Article  Google Scholar 

  • Myles, T. G. (2002a). Isolation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) from Reticulitermes flavipes (Isoptera: Rhinotermitidae) with convenient methods for its culture and collection of conidia. Sociobiology, 40, 257–262.

    Google Scholar 

  • Myles, T. G. (2002b). Alarm, aggregation, and defense by Reticulitermes flavipes in response to a naturally occurring isolate of Metarhizium anisopliae. Sociobiology, 40, 243–255.

    Google Scholar 

  • Nair, K. S. S., & Varma, R. V. (1981). Termite control in eucalyptus plantations, KFRI Res Report No 6 (p. 48). Peechi: Kerala Forest Research Institute.

    Google Scholar 

  • Nakashima, Y., & Shimizu, K. (1972). Antitermitic activity of Thujopsis dolabrata var hondai. III. Components with a termiticidal activity. Miyazaki Daigaku Nogakubu Kenkyu Hokoku, 19, 251–259.

    CAS  Google Scholar 

  • Natsir, H., & Dali, S. (2014). Production and application of chitin deacetylase from Bacillus licheniformis HSA3-1a as Biotermicide. Marina Chimica Acta, 15, 8–12.

    Google Scholar 

  • Neves, P. J., & Alves, S. B. (1999). Associated control of Cornitermes cumulans (Kollar, 1832) (Isoptera: Termitidae) with Metarhizium anisopliae, Beauveria bassiana and imidacloprid. Scientia Agricola, 56, 305–311.

    Article  Google Scholar 

  • Nguyen, K. B., & Smart, G. C. (1994). Neosteinernema longicurvicauda n. gen., n. sp. (Rhabditida: Steinernematidae), a Parasite of the Termite Reticuldermes flavipes (Koller). Journal of Nematology, 26, 162–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nix, K. E., Henderson, G., Zhu, B. C. R., & Laine, R. A. (2006). Evaluation of vetiver grass root growth, oil distribution, and repellency against formosan subterranean termites. Horticultural Science, 41, 167–171.

    Google Scholar 

  • Ochiel, G. S., Eilenberg, J., Gitonga, W., Bresciani, J., & Toft, L. (1996). Cordycepioideus bisporus, a naturally occurring fungal pathogen on termite alates in Kenya. IOBC-Wprs Bulletin, 19, 172–178.

    Google Scholar 

  • Ofori, F., & Stern, W. R. (1987). Cereal-legume intercropping systems. Advances in Agronomy, 41, 41–49.

    Article  Google Scholar 

  • Omoya, F. O., & Kelly, B. A. (2014). Variability of the potency of some selected entomopathogenic bacteria (Bacillus sp. and Serratia sp.) on termites, Macrotermes bellicosus (Isoptera: Termitidae) after exposure to magnetic fields. International Journal of Tropical Insect Science, 34, 98–105.

    Article  Google Scholar 

  • Osbrink, W. L. A., Williams, K. S., Connick, W. J., Wright, M. S., & Lax, A. R. (2001). Virulence of bacteria associated with the Formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, LA, USA. Environmental Entomology, 30, 443–448.

    Article  Google Scholar 

  • Pandey, P., Singha, L. P., & Singha, B. (2013). Colonization and antagonistic activity of entomopathogenic Aspergillus sp. against tea termite (Microcerotermes beesoni Snyder). Current Science, 105, 1216–1219.

    Google Scholar 

  • Pardeshi, M. K., Kumar, D., & Bhattacharyya, A. K. (2010). Termite (Insecta: Isoptera) fauna of some agricultural crops of Vadodara, Gujarat (India). Records of the Zoological Survey of India, 110, 47–59.

    Google Scholar 

  • Parihar, D. R. (1977). Note on some termites of Rajasthan desert. Geobios, 4, 173.

    Google Scholar 

  • Parihar, D. R. (1978). Field observations on the nature and extent of damage by Indian desert termites and their control. Annals of Arid Zone, 17, 192–199.

    Google Scholar 

  • Park, I. L. K., & Shin, S. C. (2005). Fumigant activity of plant essential oils and components from garlic (Allium sativum) and clove bud (Eugenia caryophyllata) oils against the Japanese termite (Reticulitermes speratus kolbe). Journal of Agricultural and Food Chemistry, 53, 4388–4392.

    Article  CAS  PubMed  Google Scholar 

  • Pearce, M. J. (1997a). Laboratory culture and experimental techniques using termites (p. 52). Chatham: Natural Resources Institute.

    Google Scholar 

  • Pearce, M. J. (1997b). Termites: Biology and pest management (1st ed.p. 192). Chatham: CAB International.

    Google Scholar 

  • Pemberton, C. E. (1928). Nematodes associated with termites in Hawaii, Borneo and Celebes. Proceedings of the Hawaiian Entomological Society, 7, 148–150.

    Google Scholar 

  • Poinar, G. O., Jr. (1979). Nematodes for Biological Control of Insects. Boca Raton: CRC Press.

    Google Scholar 

  • Poinar, G. O., Jr. (1990). Redescription of Chroniodiplogaster aerivora (Cobb) gen. n., comb. n. (Rhabditida: Diplogasteridae) from Termites. Journal of the Helminthological Society of Washington, 57, 26–30.

    Google Scholar 

  • Quarles, W. (1999). Non-toxic control of drywood termites. IPM Practitioner, 21, 1–10.

    Google Scholar 

  • Rahman, P. M., Varma, R. V., & Sileshi, G. W. (2012). Abundance and diversity of soil invertebrates in annual crops, agroforestry and forest ecosystems in the Nilgiri biosphere reserve of Western Ghats, India. Agroforestry Systems, 85, 165–177.

    Article  Google Scholar 

  • Rajagopal, D. (1979). Ecological studies of the mound building termites, Odontotermes wallowensis (Wasmann) (Isoptera: Termitidae) (p. 205). Ph.D. thesis, submitted to the UAS, Bangalore.

    Google Scholar 

  • Rajagopal, D. (2002). Economically important termite species in India. Sociobiology, 41, 33–46.

    Google Scholar 

  • Rajagopal, D., & Veeresh, G. K. (1983). Swarming behaviour and colony establishment in Odontotermes walloensis (Wasmann) (Isoptera: Termitidae) in South India. Journal of Soil Biology and Ecology, 3, 29–34.

    Google Scholar 

  • Rana, J. S., Ombir, & Dahiya, K. K. (2001). Management of termite, Microtermes obesi (Holm.) in wheat, Triticum aestivum through seed treatment. Annales Biologiques, 17, 207–209.

    Google Scholar 

  • Rashmi, R. S., & Sundararaj, R. (2013). Host range, pest status and distribution of wood destroying termites of india. Journal of Tropical Asian Entomology, 2, 12–27.

    Google Scholar 

  • Rath, A. C., & Tidbury, C. A. (1996). Susceptibility of Coptotermes acinaciformis (Isoptera: Rhinotermitidae) and Nasutitermes exitiosus (Isoptera: Termitidae) to two commercial isolates of Metarhizium anisopliae. Sociobiology, 28, 67–72.

    Google Scholar 

  • Rattan, P. S. (1992). Pest and disease control in Africa. In K. C. Wilson & M. N. Clifford (Eds.), Tea: Cultivation to Consumption (pp. 331–352). London: Chapman and Hall.

    Chapter  Google Scholar 

  • Rawat, R. R., Deshpande, R. R., & Kaushal, P. K. (1970). Comparative efficacy of different modern insecticides and their methods of application for the control of termites Odontotennes obesus Rambur in groundnut. The Madras Agricultural Journal, 57, 83–87.

    CAS  Google Scholar 

  • Reese, K. M. (1971). Navy fights Formosan termites in Hawaii. Chemical and Engineering News, 49, 52.

    Article  Google Scholar 

  • Rich, W. N., Stuart, J. R., & Rosanna, R. G. (2006). Susceptibility and behavioral responses of the dampwood termite Zootermopsis angusticollis to the entomopathogenic nematodes Steinernema carpocapsae. Journal of Invertebrate Pathology, 95, 17–25.

    Article  Google Scholar 

  • Roonwal, M. L. (1955). Termites ruining a township. Zeitschrift für Angewandte Entomologie, 38, 103–104.

    Article  Google Scholar 

  • Roonwal, M. L. (1979). Termite life and termite control in tropical South Asia (p. 177). Jodhpur: Scientific Publishers.

    Google Scholar 

  • Roonwal, M. L. (1981). Termites of agricultural importance in India and their importance. In G. K. Veeresh (Ed.), Progress in soil biology and ecology in India (pp. 253–265). Bangalore: UAS, Tech. Ser. No. 37.

    Google Scholar 

  • Roonwal, M. L., & Chhotani, O. B. (1967). Indian wood destroying termites. Journal of Bombay Natural History Society, 632, 354–364.

    Google Scholar 

  • Roonwal, M. L., & Chhotani, O. B. (1989). The fauna of India and the adjacent countries, Isoptera Termites (Vol. 1, p. 671). Calcutta: Zoological Survey of India.

    Google Scholar 

  • Rosengaus, R. B., & Traniello, J. F. A. (2001). Disease susceptibility and the adaptive nature of colony demography in the dampwood termite Zootermopsis angusticollis. Behavioral Ecology and Sociobiology, 50, 546–556.

    Article  Google Scholar 

  • Rosengaus, R. B., Maxmen, A. B., Coates, L. E., & Traniello, J. F. A. (1998). Disease resistance: A benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behavioral Ecology and Sociobiology, 44, 125–134.

    Article  Google Scholar 

  • Rosengaus, R. B., Traniello, J. F. A., Chen, T., & Brown, J. J. (1999). Immunity in a social insect. Naturwissenschaften, 86, 588–591.

    Article  CAS  Google Scholar 

  • Rudman, P., & Gay, F. J. (1963). Causes of natural durability in timber. X. Deterrent properties of some three-ringed carboxylic and heterocyclic substances to the subterranean termite, Nasutitermes exitiosus. C.S.I.R.O. Div. Forest Prod., Melbourne. Holzforschung, 17, 21–25.

    Article  CAS  Google Scholar 

  • Rust, M. K., & Su, N. Y. (2012). Managing Social Insects of Urban Importance. Annual Review of Entomology, 57, 355.

    Article  CAS  PubMed  Google Scholar 

  • Sacks, E. (2011). Termites eat through $222,000 worth of rupee notes in Indian bank. Daily News. Available from: http://www.mydailynews.com/news/world/termites-eat-222-000-worth-rupee-notes-indian-bank-article-1.111054

  • Sajap, A. S., Atim, A. B., Husim, H., & Wahab, Y. A. (1997). Isolation of Conidiobolus coronatus (Zygomycetes: Entomophthorales) from soil and its effect on Coptotermes curvignathus (Isoptera: Rhinotermitidae). Sociobiology, 30, 257–262.

    Google Scholar 

  • Sakasegawa, M., Hori, K., & Yatagai, M. (2003). Composition and antitermite activities of essential oils from Melaleuca species. Journal of Wood Science, 49, 81–187.

    Article  Google Scholar 

  • Sands, W. A. (1960). Observations on termites destructive to trees and crops in W. Africa ( pp. 14–66). Commonwealth Institute of Entomology, Colonial Termite Research Report, London.

    Google Scholar 

  • Santharam, G., Kumar, K., Kuttalam, S., & Chandrasekaran, S. (2002). Bioefficacy of imidacloprid against termites in sugarcane. Sugar Tech, 4, 161–163.

    Article  Google Scholar 

  • Sekamatte, M. B., Ogenga, L. M., & Russell, S. A. (2003). Effects of maize–legume intercrops on termite damage to maize, activity of predatory ants and maize yields in Uganda. Insect Science and Its Application, 22, 87–93.

    Google Scholar 

  • Sen-Sarma, P. K. (1986). Economically important termites and their management in the oriental region. In S. B. Vinson (Ed.), Economic impact and control of social insects (pp. 69–102). New York: Prager.

    Google Scholar 

  • Sen-Sarma, P. K., Thakur, M. L., Misra, S.C., & Gupta, B. K. (1975). Wood destroying termites of india (p. 190). FRI Publication.

    Google Scholar 

  • Shahina, F., Tabassum, K. A., Salma, J., & Mahreen, G. (2011). Biopesticidal affect of Photorhabdus luminescens against Galleria mellonella larvae and subterranean termite (Termitidae: Macrotermis). Pakistan Journal of Nematology, 29, 35–43.

    Google Scholar 

  • Sharma, R. N., Tare, V., & Pawan, P. (1999). Toxic action of some plant extracts against selected insect pest and vectors. Pestology, 23, 30–37.

    Google Scholar 

  • Sharma, D. C., Katoch, K. K., & Kashyap, N. P. (2002). Relative efficacy of different insecticides to Odontotermes sp. and Agrotis sp. in wheat. Insect Environment, 8, 10–11.

    Google Scholar 

  • Sharma, R. K., Sharma, K., & Sekhar, J. C. (2003). Evaluation of plant protectants on damage and yield of rainfed maize by termites. Pesticide Research Journal, 15, 36–39.

    Google Scholar 

  • Sheppe, W. (1970). Invertebrate predation on termites of the African savanna. Insectes Sociaux, 17, 205–218.

    Article  Google Scholar 

  • Singh, D., & Brar, D. S. (1988). Growth and yield of rainfed wheat as affected by seed treatment with aldrin and fertilizer use. Journal of Research Punjab Agricultural University, 25, 188–192.

    Google Scholar 

  • Singh, S. K., & Singh, G. (2002). Comparative evaluation of chemical and botanical insecticides against termites. Entomon, 27, 153–160.

    CAS  Google Scholar 

  • Singh, M., Singh, D., & Madan, Y. P. (2001). Evaluation of different soil insecticides for the control of termites in sugarcane. Indian Sugar, 51, 365–368.

    Google Scholar 

  • Singh, G., Singh, O. P., Lampasona, M. P., & Cesar, A. N. (2002a). Studies on essential oils. Part 35: Chemical and biocidal investigations on Tagetes erecta leaf volatile oil. Flavour and Fragrance, 18, 62–65.

    Article  CAS  Google Scholar 

  • Singh, M., Singh, N. B., & Singh, M. (2002b). Effect of certain insecticides on termite infestations in planted setts of sugar cane. Cooperative Sugar, 34, 311–315.

    Google Scholar 

  • Singh, M., Singh, N. B., & Singh, M. (2003). Bud damage due to termites in sugarcane. Cooperative Sugar, 33, 655–658.

    Google Scholar 

  • Singha, D., Singha, B., & Dutta, B. K. (2010). Ultrastructural details of the morphological changes in termite (Microtermes obesi Holmgren) pest of tea exposed to entomopathogenic fungi in vitro. Assam University Journal of Science and Technology, 5, 100–104.

    Google Scholar 

  • Sivapalan, P. (1999). Pest management in tea. In N. K. Jain (Ed.), Global advances in tea science (pp. 625–646). New Delhi: Aravali Books.

    Google Scholar 

  • Sivapalan, P., Senaratne, K. A. D. W., & Karunaratne, A. A. C. (1977). Observations on the occurrence and behaviour of live wood termites (Glyptotermes dilatatus) in low country tea fields. Pest Articles News Summaries, 23, 5–8.

    Google Scholar 

  • Smythe, R. V., & Coppel, H. C. (1965). The susceptibility of Reticulitermes flavipes (Kollar) and other termite species to an experimental preparation of Bacillus thuringiensis Berliner. Journal of Invertebrate Pathology, 7, 423–426.

    Article  Google Scholar 

  • Srivastava, K. P. (1996). A text book of applied entomology (Vol. I & II). Ludhiana: Kalyani Publishers.

    Google Scholar 

  • Srivastava, K. P., & Butani, D. K. (1987). Insect pests of tea in India and their contol. Pesticides, 21, 16–21.

    Google Scholar 

  • Staples, J. A., & Milner, R. J. (2000). A laboratory evaluation of the repellency of Metarhizium anisopliae conidia to Coptotermes lacteus (Isoptera: Rhinotermitidae). Sociobiology, 36, 133–146.

    Google Scholar 

  • Subektia, N., Yoshimurab, T., Rokhmanc, F., & Masturd, Z. (2015). Potential for subterranean termite attack against five bamboo species in correlation with chemical components. Procedia Environmental Sciences, 28, 783–788.

    Article  CAS  Google Scholar 

  • Sudhaus, W., & Koch, C. (2004). The new nematode species Poikilolaimus ernstmayri sp n associated with termites, with a discussion on the phylogeny of Poikilolaimus (Rhabditida). Russian Journal of Nematology, 12, 143–156.

    Google Scholar 

  • Sun, J., Fuxa, J. R., & Henderson, G. (2003). Virulence and in vitro characteristics of pathogenic fungi isolated from soil by baiting with Coptotermes formosanus (Isoptera: Rhinotermitidae). Journal of Entomological Science, 38, 342–358.

    Article  Google Scholar 

  • Tahseen, Q., Akram, M., Mustaqim, M., & Ahlawat, S. (2014). Descriptions of Pelodera scrofulata sp. nov. and Pelodera aligarhensis sp. nov.(Nematoda: Rhabditidae) with supplementary information on Pelodera teres (Schneider, 1866). Journal of Natural History, 48, 1027–1053.

    Article  Google Scholar 

  • Tanada, Y., & Kaya, H. K. (1993). Insect pathology. San Diego: Academic Press.

    Google Scholar 

  • Tewary, A. (2008). Termites feast on trader’s money, life savings. Daily news. Available from: http://news.bbc.co.uk/2/hi/south_asia/7334033.stm

  • Thakur, R. K. (1996). Termite problems in arid zones and their management. Indian Forester, 122, 161–169.

    Google Scholar 

  • Thambidurai, S. (2002). Termite control using natural plant products. Indigenous Agriculture News, 1, 9.

    Google Scholar 

  • Thorne, B. L. (1997). Evolution of eusociality in termites. Annual Review of Ecology and Systematics, 28, 27–54.

    Article  Google Scholar 

  • Toumanoff, C. (1966). Observations sur les affections bactériennes des termites en Saintonge (Reticulitermes santonensis de Feytaud). Insectes Sociaux, 13, 155–163.

    Article  Google Scholar 

  • Toumanoff, C., & Toumanoff, C. H. (1959). Les épizooties dues à Serratia marcescens Bizio chez un termite (Reticulitermes santonensis de Feytaud). Comptes Rendus Hébdomadaires de l’Academie Agricole Française, 45, 216–218.

    Google Scholar 

  • Trenbath, B. R. (1993). Intercropping for the management of pests and diseases. Field Crops Research, 34, 381–405.

    Article  Google Scholar 

  • Tsunoda, K., Ohmura, W., & Yoshimura, T. (1993). Methane emissions by the termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). (II) Presence of methanogenic bacteria and effect of food on methane emission rates. Japanese Journal of Environmental Entomology and Zoology, 27, 45–49.

    Google Scholar 

  • UNEP/FAO/Global IPM Facility Expert Group on Termite Biology and Management. (2000). Finding alternatives to persistent organic pollutants (POPs) for termite management. Online at: www.chem.unep.ch/pops/termites/termite_ch4.htm

  • Verma, R. K., & Verma, S. K. (2006). Phytochemical and termiticidal study of Lantana camara var. aculeata leaves. Fitoterapia, 77, 466–468.

    Article  PubMed  Google Scholar 

  • Verma, A. N., Bhanot, J. P., & Khurana, A. D. (1980). Effect of different dates of sowing of aldrin treated and untreated wheat seed on germination, termite damage and yield of wheat crop. Haryana Agricultural University Journal of Research, 10, 41–44.

    Google Scholar 

  • VonLieven, A. F., & Sudhaus, W. (2008). Description of Oigolaimella attenuata n. sp. (Diplogastridae) associated with termites (Reticulitermes) and remarks on life cycle, giant spermatozoa, gut-inhabiting flagellates and other associates. Nematology, 10, 501–523.

    Article  Google Scholar 

  • Wang, C., & Henderson, G. (2013). Evidence of Formosan subterranean termite group size and associated bacteria in the suppression of entomopathogenic bacteria, Bacillus thuringiensis subspecies israelensis and thuringiensis. Annals of the Entomological Society of America, 106, 454–462.

    Article  Google Scholar 

  • Wardle, D. A. (1987). Control of termites in nurseries and young plantations in Africa: Established practices and alternative courses of action. Commonwealth Forestry Review, 66, 77–89.

    Google Scholar 

  • Watson, J. M., & Stenlake, J. B. (1965). An introduction to parasitology (p. 22). London: William Heinemann Medical Books Ltd.

    Google Scholar 

  • Weeks, B., & Baker, P. (2004). Subterranean Termite (Isoptera: Rhinotermitidae) Mortality Due to Entomopathogenic Nematodes (Nematoda: Steinernematidae, Heterorhabditidae). University of Arizona College of Agriculture. 2004 Turfgrass and Ornamental Research Report, Online at: http://cals.arizona.edu/pubs/crops/az1359/

  • Wells, J. D., Fuxa, J. R., & Henderson, G. (1995). Virulence of four fungal pathogens to Coptotermes formosanus (Isoptera: Rhinotermitidae). Journal of Entomological Science, 30, 208–215.

    Article  Google Scholar 

  • Wood, T. G., & Cowie, R. H. (1988). Assessment of on-farm losses in cereals in Africa due to soil insects. Insect Science and Its Application, 9, 709–716.

    Google Scholar 

  • Wood, T. G., & Sands, W. A. (1978). The role of termites in ecosystems. In M. V. Brian (Ed.), Production ecology of ants and termites (pp. 245–292). Cambridge: Cambridge University Press.

    Google Scholar 

  • Wright, M. S. (2005). A strain of the fungus Metarhizium anisopliae for controlling subterranean termites. Journal of Economic Entomology, 98, 1451–1458.

    Article  PubMed  Google Scholar 

  • Wright, M. S., & Lax, A. R. (2013). Combined effect of microbial and chemical control agents on subterranean termites. Journal of Microbiology, 51, 578–583.

    Article  CAS  Google Scholar 

  • Yendol, W. G., & Paschke, J. D. (1965). Pathology of an Entomophthora infection in the eastern subterranean termite Reticulitermes flavipes (Kollar). Journal of Invertebrate Pathology, 7, 414–422.

    Article  Google Scholar 

  • Yu, H., Gouge, D., & Baker, P. (2006). Parasitism of subterranean termites (Isoptera: Rhinotermitidae: Termitidae) by entomopathogenic nematodes (Rhabditida: Steinernematidae; Heterorhabditidae). Journal of Economic Entomology, 99, 1112–1119.

    Article  CAS  PubMed  Google Scholar 

  • Zadji, L., Baimey, H., Afouda, L., Moens, M., & Decraemer, W. (2014a). Characterization of biocontrol traits of heterorhabditid entomopathogenic nematode isolates from South Benin targeting the termite pest Macrotermes bellicosus. BioControl, 59, 333–344.

    Article  CAS  Google Scholar 

  • Zadji, L., Baimey, H., Afouda, L., Moens, M., & Decraemer, W. (2014b). Comparative susceptibility of Macrotermes bellicosus and Trinervitermes occidentalis (Isoptera: Termitidae) to entomopathogenic nematodes from Benin. Nematology, 16, 719–727.

    Article  Google Scholar 

  • Zadji, L., Baimey, H., Afouda, L., Moens, M., & Decraemer, W. (2014c). Effectiveness of different Heterorhabditis isolates from Southern Benin for biocontrol of the subterranean termite, Macrotermes bellicosus (Isoptera: Macrotermitinae), in laboratory trials. Nematology, 16, 109–120.

    Article  Google Scholar 

  • Zhu, J. H. (2002). Study on application of entomopathogenic nematodes to control Odontotermes formosanus Shiraki on eucalyptus. Journal of Fujian College of Forestry, 22, 366–370.

    Google Scholar 

  • Zhu, B. C. R., Henderson, G., Chen, F., Fei, H., & Laine, R. A. (2001a). Evaluation of vetiver oil and seven insect-active essential oils against the formosan subterranean termite. Journal of Chemical Ecology, 27, 1617–1625.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B. C. R., Henderson, G., Chen, F., Maistrello, L., & Laine, R. A. (2001b). Nootkatone is a repellent for formosan subterranean termite (Coptotermes formosanus). Journal of Chemical Ecology, 27, 523–531.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman, G. (1993). The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pesticide Science, 37, 375–379.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bishwajeet Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paul, B., Khan, M.A., Paul, S., Shankarganesh, K., Chakravorty, S. (2018). Termites and Indian Agriculture. In: Khan, M., Ahmad, W. (eds) Termites and Sustainable Management. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-68726-1_3

Download citation

Publish with us

Policies and ethics