Skip to main content

STEM Tomography in Biology

  • Chapter
  • First Online:
Cellular Imaging

Abstract

STEM modality provides major advantages for electron tomography of thicker (>300 nm) biological specimens, both for plastic-embedded, heavy-metal stained samples, and for vitrified, unstained cells. With the proliferation of modern TEM microscopes that allow for switching between TEM and STEM modes with relative ease, we expect the use of STEM tomography to increase. The concepts for STEM imaging are significantly different than for TEM, and therefore we will describe in detail the STEM imaging modality, followed by STEM tomography concepts and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The focus is adjusted per line, assuming that the scan lines are parallel to the tilt axis.

  2. 2.

    This is essentially a statement of Heisenberg’s uncertainty principle. To the extent that the electron is localized in space during the scattering process, its momentum, and therefore emission angle, carries a finite uncertainty. Elastic scattering from the atomic nuclei involves a precise localization and therefore a large uncertainty in momentum; inelastic scattering from the much larger electron cloud invokes a correspondingly smaller uncertainty in momentum, hence a small characteristic scattering angle.

  3. 3.

    It should be stressed that we consider here thick samples for which STEM imaging offers advantages over TEM. For the opposite extreme, that is for thin unstained samples up to a few 100s of nanometers, TEM proves superior. For such samples that are considerably thinner than the inelastic MFP, and for which the weak phase approximation holds, TEM phase contrast offers superior contrast and signal-to-noise-ratio compared with the STEM dark field [24].

References

  1. A.V. Crewe, J. Wall, L.M. Welter, A high-resolution scanning electron microscope. J. Appl. Phys. 39(13), 5861–5868 (1968). doi:10.1063/1.1656079

    Article  ADS  Google Scholar 

  2. J. Wall, J. Langmore, M. Isaacson, A.V. Crewe, Scanning-transmission electron microscopy at high resolution. Proc. Natl. Acad. Sci. 71(1), 1–5 (1974). doi:10.1073/pnas.71.1.1

    Article  ADS  Google Scholar 

  3. R. Grimm, D. Typke, M. Barmann, W. Baumeister, Determination of the inelastic mean free path in ice by examination of tilted vesicles and automated most probable loss imaging. Ultramicroscopy 63(3–4), 169–179 (1996). doi:10.1016/0304-3991(96)00035-6

  4. A.N. Stroud, L.M. Welter, D.A. Resh, D.A. Habeck, A.V. Crewe, J. Wall, Scanning electron microscopy of cells. Science 164(3881), 830–832 (1969). doi:10.1126/science.164.3881.830

    Article  ADS  Google Scholar 

  5. A.V. Crewe, J. Wall, A scanning microscope with 5 Å resolution. J. Mol. Biol. 48(3), 375–393 (1970). doi:http://dx.doi.org/10.1016/0022-2836(70)90052-5

  6. E. Kellenberger, E. Carlemalm, W. Villiger, M. Wurtz, C. Mory, C. Colliex, Z-Contrast in biology—a comparison with other imaging modes. Ann. Ny. Acad. Sci. 483, 202–228 (1986). doi:10.1111/j.1749-6632.1986.tb34522.x

  7. C. Colliex, C. Mory, A.L. Olins, D.E. Olins, M. Tencé, Energy filtered STEM imaging of thick biological sections. J. Microsc. 153(Pt 1), 1–21 (1989). doi:10.1111/j.1365-2818.1989.tb00588.x

    Article  Google Scholar 

  8. C. Colliex, C. Mory, Scanning transmission electron microscopy of biological structures. Biol. Cell 80(2–3), 175–180 (1994)

    Article  Google Scholar 

  9. A. Engel, in Scanning Transmission Electron Microscopy: Biological Applications, ed. by P.W. Hawkes, Advances in Imaging and Electron Physics, vol 159. Cold Field Emission and the Scanning Transmission Electron Microscope. Elsevier, pp 357–386 (2009). doi:10.1016/s1076-5670(09)59009-x

  10. A. Engel, Molecular weight determination by scanning transmission electron microscopy. Ultramicroscopy 3, 273–281 (1978). doi:http://dx.doi.org/10.1016/S0304-3991(78)80037-0

  11. R. Freeman, K.R. Leonard, Comparative mass measurement of biological macromolecules by scanning transmission electron microscopy. J. Microsc. 122(3), 275–286 (1981)

    Article  Google Scholar 

  12. J.S. Wall, J.F. Hainfeld, Mass mapping with the scanning transmission electron microscope. Annu. Rev. Biophys. Biophys. Chem. 15(1), 355–376 (1986). doi:10.1146/annurev.bb.15.060186.002035

    Article  Google Scholar 

  13. S.A. Muller, A. Engel, Structure and mass analysis by scanning transmission electron microscopy. Micron (Oxford, England: 1993) 32(1), 21–31 (2001). doi:10.1016/S0968-4328(00)00022-6

  14. A.A. Sousa, R.D. Leapman, Development and application of STEM for the biological sciences. Ultramicroscopy 123, 38–49 (2012). doi:10.1016/j.ultramic.2012.04.005

  15. D.C. Bell, W.K. Thomas, K.M. Murtagh, C.A. Dionne, A.C. Graham, J.E. Anderson, W.R. Glover, DNA base identification by electron microscopy. Microsc. Microanal. 18(5), 1049–1053 (2012). doi:10.1017/S1431927612012615

    Article  ADS  Google Scholar 

  16. N. de Jonge, F.M. Ross, Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6(11), 695–704 (2011). doi:10.1038/nnano.2011.161

  17. T. Klein, E. Buhr, G.C. Frase, in Chapter 6—TSEM: A Review of Scanning Electron Microscopy in Transmission Mode and Its Applications, ed by W.H. Peter. Advances in Imaging and Electron Physics, vol 171. Elsevier, pp 297–356 (2012). doi:http://dx.doi.org/10.1016/B978-0-12-394297-5.00006-4

  18. R. Egerton, Electron energy-loss spectroscopy in the electron microscope. 3 edn. Springer US (2011). doi:10.1007/978-1-4419-9583-4

  19. M.A. Aronova, R.D. Leapman, Development of electron energy-loss spectroscopy in the biological sciences. MRS Bull. 37(1), 53–62 (2012). doi:10.1557/mrs.2011.329

    Article  Google Scholar 

  20. S.G. Wolf, L. Houben, M. Elbaum, Cryo-scanning transmission electron tomography of vitrified cells. Nat. Methods 11(4), 423–428 (2014). doi:10.1038/nmeth.2842

    Article  Google Scholar 

  21. L. Reimer, H. Kohl, Transmission electron microscopy: physics of image formation (2008). doi:10.1007/978-0-387-40093-8

    ADS  Google Scholar 

  22. L. Reimer, M. Ross-Messemer, Contrast in the electron spectroscopic imaging mode of a TEM. J. Microsc. 159(2), 143–160 (1990). doi:10.1111/j.1365-2818.1990.tb04772.x

    Article  Google Scholar 

  23. S. Sun, S. Shi, R. Leapman, Water distributions of hydrated biological specimens by valence electron energy loss spectroscopy. Ultramicroscopy 50(2), 127–139 (1993). doi:http://dx.doi.org/10.1016/0304-3991(93)90003-G

  24. P. Rez, Comparison of phase contrast transmission electron microscopy with optimized scanning transmission annular dark field imaging for protein imaging. Ultramicroscopy 96(1), 117–124 (2003). doi:10.1016/S0304-3991(02)00436-9

  25. J.S. Wall, J.F. Hainfeld, M.N. Simon, Scanning transmission electron microscopy of nuclear structures. Methods Cell Biol. 53, 139–164 (1998)

    Article  Google Scholar 

  26. H. Rose, Influence of plural scattering on the image quality of thick amorphous objects in transmission electron microscopy. in 9th International Congress on Electron Microscopy, Toronto, 1978. pp 230–243

    Google Scholar 

  27. J.K. Hyun, P. Ercius, D.A. Muller, Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy 109(1), 1–7 (2008). doi:10.1016/j.ultramic.2008.07.003

    Article  Google Scholar 

  28. A.A. Sousa, M.F. Hohmann-Marriott, G. Zhang, R.D. Leapman, Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections. Ultramicroscopy 109(3), 213–221 (2009)

    Article  Google Scholar 

  29. J. Barthel, Time-efficient frozen phonon multislice calculations for image simulations in high-resolution STEM, in Proceedings of the 15th European Microscopy Congress, Manchester, 2012

    Google Scholar 

  30. R. Reichelt, A. Engel, Contrast and resolution of scanning transmission electron microscope imaging modes. Ultramicroscopy 19(1), 43–56 (1986)

    Article  Google Scholar 

  31. M.F. Hohmann-Marriott, A.A. Sousa, A.A. Azari, S. Glushakova, G. Zhang, J. Zimmerberg, R.D. Leapman, Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat. Methods 6(10), 729–731 (2009). doi:10.1038/nmeth.1367

  32. K. Aoyama, T. Takagi, A. Hirase, A. Miyazawa, STEM tomography for thick biological specimens. Ultramicroscopy 109, 70–80 (2008). doi:10.1016/j.ultramic.2008.08.005

    Article  Google Scholar 

  33. H. Hashimoto, in Proceedings. AMU-ANL Workshop on High Voltage Electron Microscopy, Argonne National Laboratory, 1966, pp. 68–70

    Google Scholar 

  34. L. Reimer, P. Gentsch, Superposition of chromatic error and beam broadening in transmission electron microscopy of thick carbon and organic specimens. Ultramicroscopy 1(1), 1–5 (1975)

    Article  Google Scholar 

  35. S. Trepout, C. Messaoudi, S. Perrot, P. Bastin, S. Marco, Scanning transmission electron microscopy through-focal tilt-series on biological specimens. Micron (Oxford, England: 1993) 77, 9–15 (2015). doi:http://dx.doi.org/10.1016/j.micron.2015.05.015

  36. T. Dahmen, H. Kohr, N. de Jonge, P. Slusallek, Matched backprojection operator for combined scanning transmission electron microscopy tilt- and focal series. Microsc. Microanal. 21(03), 725–738 (2015)

    Google Scholar 

  37. P. Rez, T. Larsen, M. Elbaum, Exploring the theoretical basis and limitations of cryo-STEM tomography for thick biological specimens. J. Struct. Biol. 196(3), 466–478 (2016)

    Google Scholar 

  38. J.S. Wu, A.M. Kim, R. Bleher, B.D. Myers, R.G. Marvin, H. Inada, K. Nakamura, X.F. Zhang, E. Roth, S.Y. Li, T.K. Woodruff, T.V. O’Halloran, V.P. Dravid, Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron. Ultramicroscopy 128, 24–31 (2013). doi:10.1016/j.ultramic.2013.01.004

    Article  Google Scholar 

  39. Y.H. Pan, K. Sader, J.J. Powell, A. Bleloch, M. Gass, J. Trinick, A. Warley, A. Li, R. Brydson, A. Brown, 3D morphology of the human hepatic ferritin mineral core: new evidence for a subunit structure revealed by single particle analysis of HAADF-STEM images. J. Struct. Biol. 166(1), 22–31 (2009). doi:10.1016/j.jsb.2008.12.001

    Article  Google Scholar 

  40. F.S. Sjostrand, Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. J. Ultrastruct. Res. 2(1), 122–170 (1958)

    Article  Google Scholar 

  41. F. Nagata, K. Hama, K.R. Porter, Three dimensional observation of biological specimen with high voltage electron microscope. J. Electron. Microsc. (Tokyo) 18(2), 106–109 (1969)

    Google Scholar 

  42. A.M. Glauert, The high voltage electron microscope in biology. J. Cell Biol. 63(3), 717–748 (1974)

    Article  Google Scholar 

  43. P. Favard, N. Carasso, The preparation and observation of thick biological sections in the high voltage electron microscope. J. Microsc. 97(1), 59–81 (1973)

    Article  Google Scholar 

  44. G.L. Scott, R.W. Guillery, Studies with the high voltage electron microscope of normal, degenerating, and Golgi impregnated neuronal processes. J. Neurocytol. 3(5), 567–590 (1974)

    Article  Google Scholar 

  45. T. Arii, K. Hama, Method of extracting three-dimensional information from HVTEM stereo images of biological materials. J. Electron. Microsc. (Tokyo) 36(4), 177–195 (1987)

    Google Scholar 

  46. J. Frank, Electron tomography: methods for three-dimensional visualization of structures in the cell, 2nd edn. (Springer, New York, London, 2006)

    Book  Google Scholar 

  47. A. Takaoka, T. Hasegawa, K. Yoshida, H. Mori, Microscopic tomography with ultra-HVEM and applications. Ultramicroscopy 108(3), 230–238 (2008). doi:10.1016/j.ultramic.2007.06.008

    Article  Google Scholar 

  48. K. Murata, M. Esaki, T. Ogura, S. Arai, Y. Yamamoto, N. Tanaka, Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography. Ultramicroscopy 146, 39–45 (2014). doi:10.1016/j.ultramic.2014.05.008

    Article  Google Scholar 

  49. M. vonArdenne, Personal recollections about the development of the electron microscope and its technology. Optik 105(4), 139–153 (1997)

    Google Scholar 

  50. T. Groves, Thick specimens in the CEM and STEM resolution and image formation. Ultramicroscopy 1(15–31) (1975)

    Google Scholar 

  51. K. Zierold, X-ray microanalysis of freeze-dried and frozen-hydrated cryosections. J Electron Microsc. Tech. 9(1), 65–82 (1988). doi:10.1002/jemt.1060090107

    Article  Google Scholar 

  52. R.D. Leapman, Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging. J. Microsc. 210(1), 5–15 (2003). doi:10.1046/j.1365-2818.2003.01173.x

    Article  MathSciNet  Google Scholar 

  53. M.T. Otten, D.J. Stenzel, D.R. Cousens, B.M. Humbel, J.L.M. Leunissen, Y.D. Stierhof, W.M. Busing, High-angle annular dark-field STEM imaging of immunogold labels. Scanning 14(5), 282–289 (1992). doi:10.1002/sca.4950140507

    Article  Google Scholar 

  54. U. Ziese, C. Kubel, A. Verkleij, A.J. Koster, Three-dimensional localization of ultrasmall immuno-gold labels by HAADF-STEM tomography. J. Struct. Biol. 138(1–2), 58–62 (2002). doi:10.1016/S1047-8477(02)00018-7

    Article  Google Scholar 

  55. A.A. Sousa, M.A. Aronova, Y.C. Kim, L.M. Dorward, G. Zhang, R.D. Leapman, On the feasibility of visualizing ultrasmall gold labels in biological specimens by STEM tomography. J. Struct. Biol. 159(3), 507–522 (2007). doi:10.1016/j.jsb.2007.06.006

    Article  Google Scholar 

  56. P. Gentsch, H. Gilde, L. Reimer, Measurement of the top bottom effect in scanning transmission electron microscopy of thick amorphous specimens. J. Microsc. 100(1), 81–92 (1974). doi:10.1111/j.1365-2818.1974.tb03915.x

    Article  Google Scholar 

  57. D.J. Smith, J.M. Cowley, Aperture contrast in thick amorphous specimens using scanning transmission electron microscopy. Ultramicroscopy 1(2), 127–136 (1975). doi:10.1111/epi.12023

    Article  Google Scholar 

  58. A. Beorchia, L. Heliot, M. Menager, H. Kaplan, D. Ploton, Applications of medium-voltage STEM for the 3-D study of organelles within very thick sections. J. Microsc. 170(Pt 3), 247–258 (1993)

    Article  Google Scholar 

  59. P.A. Midgley, M. Weyland, J.M. Thomas, B.F.G. Johnson, Z-Contrast tomography: a technique in three-dimensional nanostructural analysis based on Rutherford scattering. Chem. Comm. 16(10), 907–908 (2001). doi:10.1039/b101819c

    Article  Google Scholar 

  60. A.E. Yakushevska, M.N. Lebbink, W.J.C. Geerts, L. Spek, E.G. van Donselaar, K.A. Jansen, B.M. Humbel, J.A. Post, A.J. Verkleij, A.J. Koster, STEM tomography in cell biology. J. Struct. Biol. 159(3), 381–391 (2007). doi:http://dx.doi.org/10.1016/j.jsb.2007.04.006

  61. F. Zemlin, Dynamic focussing for recording images from tilted samples in small-spot scanning with a transmission electron microscope. J. Electron Microsc. Tech. 11(4), 251–257 (1989). doi:10.1002/jemt.1060110404

    Article  Google Scholar 

  62. K.H. Downing, Automatic focus correction for spot-scan imaging of tilted specimens. Ultramicroscopy 46(1–4), 199–206 (1992)

    Article  Google Scholar 

  63. D.N. Mastronarde, Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152(1), 36–51 (2005). doi:10.1016/j.jsb.2005.07.007

    Article  Google Scholar 

  64. C. Kübel, A. Voigt, R. Schoenmakers, M. Otten, D. Su, T.-C. Lee, A. Carlsson, J. Bradley, Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 11(5), 378–400 (2005). doi:10.1017/S1431927605050361

    Article  ADS  Google Scholar 

  65. J. Feng, A.P. Somlyo, A.V. Somlyo, Z. Shao, Automated electron tomography with scanning transmission electron microscopy. J. Microsc. 228(Pt 3), 406–412 (2007). doi:10.1111/j.1365-2818.2007.01859.x

    Article  MathSciNet  Google Scholar 

  66. L. Bonetta, Zooming in on electron tomography. Nat. Meth. 2(2), 139–145 (2005). doi:10.1038/nmeth0205-139

  67. P.A. Midgley, M. Weyland, 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96(3–4), 413–431 (2003). doi:10.1016/S0304-3991(03)00105-0

    Article  Google Scholar 

  68. J. Loos, E. Sourty, K. Lu, B. Freitag, D. Tang, D. Wall, Electron tomography on micrometer-thick specimens with nanometer resolution. Nano. Lett. 9(4), 1704–1708 (2009). doi:10.1021/nl900395g

    Article  ADS  Google Scholar 

  69. J. Biskupek, J. Leschner, P. Walther, U. Kaiser, Optimization of STEM tomography acquisition-a comparison of convergent beam and parallel beam STEM tomography. Ultramicroscopy 110(9), 1231–1237 (2010). doi:10.1016/j.ultramic.2010.05.008

    Article  Google Scholar 

  70. A.A. Sousa, A.A. Azari, G.F. Zhang, R.D. Leapman, Dual-axis electron electron tomography of biological specimens: extending the limits of specimen thickness with bright-field STEM imaging. J. Struct. Biol. 174(1), 107–114 (2011). doi:10.1016/j.jsb.2010.10.017

  71. S. Boonrungsiman, E. Gentleman, R. Carzaniga, N.D. Evans, D.W. McComb, A.E. Porter, M.M. Stevens, The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc. Natl. Acad. Sci. U S A 109(35), 14170–14175 (2012). doi:10.1073/pnas.1208916109

    Article  ADS  Google Scholar 

  72. G.M. Khalifa, D. Kirchenbuechler, N. Koifman, O. Kleinerman, Y. Talmon, M. Elbaum, L. Addadi, S. Weiner, J. Erez, Biomineralization pathways in a foraminifer revealed using a novel correlative cryo-fluorescence–SEM–EDS technique. J. Struct. Biol. doi:http://dx.doi.org/10.1016/j.jsb.2016.01.015

  73. R.D. Leapman, S.Q. Sun, Cryoelectron energy-loss spectroscopy—observations on vitrified hydrated specimens and radiation damage. Ultramicroscopy 59(1–4), 71–79 (1995). doi:10.1016/0304-3991(95)00019-w

    Article  Google Scholar 

  74. L.R. Comolli, K.H. Downing, Dose tolerance at helium and nitrogen temperatures for whole cell electron tomography. J. Struct. Biol. 152(3), 149–156 (2005). doi:10.1016/j.jsb.2005.08.004

  75. L.A. Baker, J.L. Rubinstein, Radiation damage in electron cryomicroscopy. Methods Enzymol. 481, 371–388 (2010). doi:10.1016/S0076-6879(10)81015-8

    Article  Google Scholar 

  76. J.P. Buban, Q. Ramasse, B. Gipson, N.D. Browning, H. Stahlberg, High-resolution low-dose scanning transmission electron microscopy. J. Electron. Microsc. (Tokyo) 59(2), 103–112 (2010). doi:10.1093/jmicro/dfp052

    Article  Google Scholar 

  77. R.C. Guerrero-Ferreira, E.R. Wright, Cryo-electron tomography of bacterial viruses. Virology 435(1), 179–186 (2013). doi:http://dx.doi.org/10.1016/j.virol.2012.08.022

  78. K. Celler, R.I. Koning, A.J. Koster, G.P. van Wezel, Multidimensional view of the bacterial cytoskeleton. J. Bacteriol. 195(8), 1627–1636 (2013). doi:10.1128/jb.02194-12

    Article  Google Scholar 

  79. C.M. Oikonomou, G.J. Jensen, A new view into prokaryotic cell biology from electron cryotomography. Nat. Rev. Micro. 14(4), 205–220 (2016). doi:10.1038/nrmicro.2016.7

    Article  Google Scholar 

  80. V. Gold, M. Kudryashev, Recent progress in structure and dynamics of dual-membrane-spanning bacterial nanomachines. Curr. Opin. Struct. Biol. 39, 1–7 (2016). doi:http://dx.doi.org/10.1016/j.sbi.2016.03.001

  81. M.M. Farley, B. Hu, W. Margolin, J. Liu, Minicells, back in fashion. J. Bacteriol. 198(8), 1186–1195 (2016). doi:10.1128/jb.00901-15

    Article  Google Scholar 

  82. X. Fu, B.A. Himes, D. Ke, W.J. Rice, J. Ning, P. Zhang, Controlled bacterial lysis for electron tomography of native cell membranes. Structure 22(12), 1875–1882 (2014). doi:http://dx.doi.org/10.1016/j.str.2014.09.017

  83. P. Rez, W. Chiu, J.K. Weiss, J. Brink, The thickness determination of organic crystals under low dose conditions using electron energy loss spectroscopy. Microsc. Res. Tech. 21(2), 166–170 (1992). doi:10.1002/jemt.1070210208

    Article  Google Scholar 

  84. S.G. Wolf, P. Rez, M. Elbaum, Phosphorus detection in vitrified bacteria by cryo-STEM annular dark-field analysis. J. Microsc. 260(2), 227–233 (2015). doi:10.1111/jmi.12289

    Article  Google Scholar 

  85. S. Asano, B.D. Engel, W. Baumeister, In Situ Cryo-Electron Tomography: A Post-Reductionist Approach to Structural Biology. J. Mol. Biol. 428(2, Part A), 332–343 (2016). doi:http://dx.doi.org/10.1016/j.jmb.2015.09.030

  86. R. Fernández-Busnadiego, Supramolecular architecture of endoplasmic reticulum–plasma membrane contact sites. Biochem. Soc. Trans. 44(2), 534–540 (2016). doi:10.1042/bst20150279

    Article  Google Scholar 

  87. R.N. Irobalieva, B. Martins, O. Medalia, Cellular structural biology as revealed by cryo-electron tomography. J. Cell Sci. 129(3), 469–476 (2016). doi:10.1242/jcs.171967

    Article  Google Scholar 

  88. C. Bouchet-Marquis, A. Hoenger, Cryo-electron tomography on vitrified sections: a critical analysis of benefits and limitations for structural cell biology. Micron (Oxford, England: 1993) 42(2), 152–162 (2011). doi:http://dx.doi.org/10.1016/j.micron.2010.07.003

  89. A. Al-Amoudi, A.S. Frangakis, in Three-Dimensional Visualization of the Molecular Architecture of Cell–Cell Junctions In Situ by Cryo-Electron Tomography of Vitreous Sections, ed. by C. Has, C. Sitaru. Molecular Dermatology: Methods and Protocols. Humana Press, Totowa, NJ, pp. 97–117 (2013). doi:10.1007/978-1-62703-227-8_4

  90. L. Norlén, O. Öktem, U. Skoglund, Molecular cryo-electron tomography of vitreous tissue sections: current challenges. J. Microsc. 235(3), 293–307 (2009). doi:10.1111/j.1365-2818.2009.03219.x

    Article  MathSciNet  Google Scholar 

  91. T. Wagenknecht, C. Hsieh, M. Marko, Skeletal Muscle Triad Junction Ultrastructure by Focused-Ion-Beam Milling of Muscle and Cryo-Electron Tomography. European journal of translational myology 25(1), 4823 (2015). doi:10.4081/ejtm.2015.4823

    Article  Google Scholar 

  92. J. Arnold, J. Mahamid, V. Lucic, A. de Marco, J.J. Fernandez, T. Laugks, T. Mayer, A.A. Hyman, W. Baumeister, J.M. Plitzko, Site-Specific Cryo-focused ion beam sample preparation guided by 3D correlative microscopy. Biophys. J. 110(4), 860–869 (2016). doi:10.1016/j.bpj.2015.10.053

    Article  ADS  Google Scholar 

  93. J. Mahamid, S. Pfeffer, M. Schaffer, E. Villa, R. Danev, L. Kuhn Cuellar, F. Förster, A.A. Hyman, J.M. Plitzko, W. Baumeister, Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351(6276), 969–972 (2016). doi:10.1126/science.aad8857

    Article  ADS  Google Scholar 

  94. D. Kirchenbuechler, Y. Mutsafi, B. Horowitz, D. Fass, S.G. Wolf, M. Elbaum, Cryo-STEM tomography of intact vitrified fibroblasts. AIMS Biophys. 2(3), 259–273 (2015). doi:10.3934/biophy.2015.3.259

  95. D. Charuvi, V. Kiss, R. Nevo, E. Shimoni, Z. Adam, Z. Reich, Gain and loss of photosynthetic membranes during plastid differentiation in the shoot apex of Arabidopsis. Plant Cell 24(3), 1143–1157 (2012). doi:10.1105/tpc.111.094458

    Article  Google Scholar 

  96. S. Kapishnikov, A. Weiner, E. Shimoni, P. Guttmann, G. Schneider, N. Dahan-Pasternak, R. Dzikowski, L. Leiserowitz, M. Elbaum, Oriented nucleation of hemozoin at the digestive vacuole membrane in Plasmodium falciparum. Proc. Natl. Acad. Sci. U S A 109(28), 11188–11193 (2012). doi:10.1073/pnas.1118120109

    Article  ADS  Google Scholar 

  97. Y. Mutsafi, E. Shimoni, A. Shimon, A. Minsky, Membrane assembly during the infection cycle of the giant mimivirus. PLoS Pathog. 9(5), e1003367 (2013). doi:10.1371/journal.ppat.1003367

    Article  Google Scholar 

  98. O. Tsabari, R. Nevo, S. Meir, L.R. Carrillo, D.M. Kramer, Z. Reich, Differential effects of ambient or diminished CO2 and O2 levels on thylakoid membrane structure in light-stressed plants. Plant J. 81(6), 884–894 (2015). doi:10.1111/tpj.12774

    Article  Google Scholar 

  99. E. Milrot, Y. Mutsafi, Y. Fridmann-Sirkis, E. Shimoni, K. Rechav, J.R. Gurnon, J.L. Van Etten, A. Minsky, Virus–host interactions: insights from the replication cycle of the large Paramecium bursaria chlorella virus. Cell. Microbiol. 18(1), 3–16 (2016). doi:10.1111/cmi.12486

    Article  Google Scholar 

  100. E. Kennedy, E.M. Nelson, T. Tanaka, J. Damiano, G. Timp, Live bacterial physiology visualized with 5 nm resolution using scanning transmission electron microscopy. ACS Nano 10(2), 2669–2677 (2016). doi:10.1021/acsnano.5b07697

    Article  Google Scholar 

  101. Nd Jonge, D.B. Peckys, G.J. Kremers, D.W. Piston, Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. 106(7), 2159–2164 (2009). doi:10.1073/pnas.0809567106

    Article  ADS  Google Scholar 

  102. S. Kapishnikov, A. Weiner, E. Shimoni, G. Schneider, M. Elbaum, L. Leiserowitz, Digestive vacuole membrane in Plasmodium falciparum-infected erythrocytes: relevance to templated nucleation of hemozoin. Langmuir: ACS J. Surf. Colloids 29(47), 14595–14602 (2013). doi:10.1021/la402545c

    Article  Google Scholar 

  103. E.A. Smith, B.P. Cinquin, M. Do, G. McDermott, M.A. Le Gros, C.A. Larabell, Correlative cryogenic tomography of cells using light and soft x-rays. Ultramicroscopy 143, 33–40 (2014). doi:10.1016/j.ultramic.2013.10.013

    Article  Google Scholar 

  104. E. Duke, K. Dent, M. Razi, L.M. Collinson, Biological applications of cryo-soft X-ray tomography. J. Microsc. 255(2), 65–70 (2014). doi:10.1111/jmi.12139

    Google Scholar 

  105. A. Schertel, N. Snaidero, H.M. Han, T. Ruhwedel, M. Laue, M. Grabenbauer, W. Mobius, Cryo FIB-SEM: volume imaging of cellular ultrastructure in native frozen specimens. J. Struct. Biol. 184(2), 355–360 (2013). doi:10.1016/j.jsb.2013.09.024

    Article  Google Scholar 

  106. N. Vidavsky, A. Masic, A. Schertel, S. Weiner, L. Addadi, Mineral-bearing vesicle transport in sea urchin embryos. J. Struct. Biol. 192(3), 358–365 (2015). doi:10.1016/j.jsb.2015.09.017

    Article  Google Scholar 

  107. S. Sviben, A. Gal, M.A. Hood, L. Bertinetti, Y. Politi, M. Bennet, P. Krishnamoorthy, A. Schertel, R. Wirth, A. Sorrentino, E. Pereiro, D. Faivre, A. Scheffel, A vacuole-like compartment concentrates a disordered calcium phase in a key coccolithophorid alga. Nat. Commun. 7 (2016). doi:10.1038/ncomms11228

  108. J.R. Kremer, D.N. Mastronarde, J.R. McIntosh, Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116(1), 71–76 (1996). doi:10.1006/jsbi.1996.0013

    Article  Google Scholar 

  109. J.-I. Agulleiro, J.-J. Fernandez, Tomo3D 2.0—Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction. J. Struct. Biol. 189(2), 147–152 (2015). doi:http://dx.doi.org/10.1016/j.jsb.2014.11.009

  110. C. MessaoudiI, T. Boudier, C.O.S. Sorzano, S. Marco, TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8(1), 1–9 (2007). doi:10.1186/1471-2105-8-288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Grayer Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wolf, S.G., Shimoni, E., Elbaum, M., Houben, L. (2018). STEM Tomography in Biology. In: Hanssen, E. (eds) Cellular Imaging. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68997-5_2

Download citation

Publish with us

Policies and ethics