Skip to main content

Electron Cryo-Tomography

  • Chapter
  • First Online:
Cellular Imaging

Abstract

Electron cryo-tomography is an integrative imaging technique that produces high-resolution 3-D images of cells and purified complexes. These images can uniquely provide mechanistic insights into in situ biology at molecular and cellular scales. To produce these images, specimens are preserved by flash-freezing without stains or fixatives; these flash-frozen specimens are imaged over a range of angles in an electron microscope and this data used to reconstruct 3-D images of the specimen in near-native state to ‘macromolecular’ resolution. In this introductory chapter we take the perspective of the workflow of a cryo-tomography project to outline the technique, and important underlying concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. C.M. Oikonomou, G.J. Jensen, A new view into prokaryotic cell biology from electron cryotomography. Nat. Rev. Microbiol. (2016)

    Google Scholar 

  2. L. Gan, G.J. Jensen, Electron tomography of cells. Q. Rev. Biophys. 45(01), 27–56 (2012)

    Article  Google Scholar 

  3. J.L.S. Milne, S. Subramaniam, Cryo-electron tomography of bacteria: progress, challenges and future prospects. Nat. Rev. Microbiol. 7(9), 666–675 (2009)

    Article  Google Scholar 

  4. V. Lučić, A. Rigort, W. Baumeister, Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202(3), 407–419 (2013)

    Article  Google Scholar 

  5. J.A.G. Briggs, Structural biology in situ–the potential of subtomogram averaging. Curr. Opin. Struct. Biol. 23(2), 261–267 (2013)

    Article  MathSciNet  Google Scholar 

  6. W. Kühlbrandt, The resolution revolution. Science 343(6178), 1443–1444 (2014)

    Article  ADS  Google Scholar 

  7. D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science. (Springer, 2009)

    Google Scholar 

  8. G. Rhodes, Crystallography made crystal clear a guide for users of macromolecular models (Elsevier/Academic Press, Amsterdam; Boston, 2006)

    Google Scholar 

  9. E. Hecht, Optics (Fourth edition, Pearson new international edition, 2014)

    Google Scholar 

  10. J.C. Russ, The image processing handbook, 6th edn. (CRC; London, Boca Raton, Fla, 2010)

    MATH  Google Scholar 

  11. J. Dubochet, Cryo-EM—the first thirty years. J. Microsc. 245(3), 221–224 (2012)

    Article  Google Scholar 

  12. K. Dierksen, D. Typke, R. Hegerl, J. Walz, E. Sackmann, W. Baumeister, Three-dimensional structure of lipid vesicles embedded in vitreous ice and investigated by automated electron tomography. Biophys. J. 68(4), 1416–1422 (1995)

    Article  Google Scholar 

  13. R. Grimm, M. Bärmann, W. Häckl, D. Typke, E. Sackmann, W. Baumeister, Energy filtered electron tomography of ice-embedded actin and vesicles. Biophys. J. 72(1), 482–489 (1997)

    Article  ADS  Google Scholar 

  14. R. Grimm, H. Singh, R. Rachel, D. Typke, W. Zillig, W. Baumeister, Electron tomography of ice-embedded prokaryotic cells. Biophys. J. 74(2), 1031–1042 (1998)

    Article  ADS  Google Scholar 

  15. P.N.T. Unwin, P.D. Ennis, Two configurations of a channel-forming membrane protein. Nature 307(5952), 609–613 (1984)

    Article  ADS  Google Scholar 

  16. J. Dubochet, Aw McDowall, Vitrification of pure water for electron microscopy. J. Microsc. 124(3), 3–4 (1981)

    Article  Google Scholar 

  17. L. Gan, M.S. Ladinsky, G.J. Jensen, Organization of the smallest eukaryotic spindle. Curr. Biol. 21(18), 1578–1583 (2011)

    Article  Google Scholar 

  18. M.M. Farley, B. Hu, W. Margolin, J. Liu, Minicells, Back in Fashion. J. Bacteriol. JB. 00901–15 (2016)

    Google Scholar 

  19. E.I. Tocheva et al., Peptidoglycan transformations during Bacillus subtilis sporulation. Mol. Microbiol. 88(4), 673–686 (2013)

    Article  Google Scholar 

  20. T. Murray, D.L. Popham, P. Setlow, Bacillus subtilis cells lacking penicillin-binding protein 1 require increased levels of divalent cations for growth. J. Bacteriol. 180(17), 4555–4563 (1998)

    Google Scholar 

  21. M. Schaechter, O. Maaloe, N. Kjeldgaard, Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol. 19(3), 592–606 (1958)

    Article  Google Scholar 

  22. S. Chen et al., Structural diversity of bacterial flagellar motors. EMBO J. 30(14), 2972–2981 (2011)

    Article  Google Scholar 

  23. K.M. Davies et al., Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc. Natl. Acad. Sci. 108(34), 14121–14126 (2011)

    Article  ADS  Google Scholar 

  24. K.H. Bui et al., Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155(6), 1233–1243 (2013)

    Article  Google Scholar 

  25. A. Briegel, et al., Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. eLife 3, e02151 ( 2014)

    Google Scholar 

  26. C.J. Russo, L.A. Passmore, Ultrastable gold substrates: properties of a support for high-resolution electron cryomicroscopy of biological specimens. J. Struct. Biol. 193(1), 33–44 (2016)

    Article  Google Scholar 

  27. W.F. Tivol, A. Briegel, G.J. Jensen, An improved cryogen for plunge freezing. Microsc. Microanal. 14(05), 375–379 (2008)

    Article  ADS  Google Scholar 

  28. D. Studer, B.M. Humbel, M. Chiquet, Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution. Histochem. Cell Biol. 130(5), 877–889 (2008)

    Article  Google Scholar 

  29. K.L. McDonald, M. Auer, High-pressure freezing, cellular tomography, and structural cell biology, BioTechniques, 41(2), 137, 139, 141 passim, (Aug. 2006)

    Google Scholar 

  30. M. Marko, C. Hsieh, W. Moberlychan, C.A. Mannella, J. Frank, Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples. J. Microsc. 222(1), 42–47 (2006)

    Article  MathSciNet  Google Scholar 

  31. E. Villa, M. Schaffer, J.M. Plitzko, W. Baumeister, Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Curr. Opin. Struct. Biol. 23(5), 771–777 (2013)

    Article  Google Scholar 

  32. J. Mahamid et al., Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351(6276), 969–972 (2016)

    Article  ADS  Google Scholar 

  33. L.G. Dowell, A.P. Rinfret, Low-temperature forms of ice as studied by X-Ray diffraction. Nature 188(4757), 1144–1148 (1960)

    Article  ADS  Google Scholar 

  34. W.V. Nicholson, H. White, J. Trinick, An approach to automated acquisition of cryoEM images from lacey carbon grids. J. Struct. Biol. 172(3), 395–399 (2010)

    Article  Google Scholar 

  35. M. Beeby, D.A. Ribardo, C.A. Brennan, E.G. Ruby, G.J. Jensen, D.R. Hendrixson, Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc. Natl. Acad. Sci. 113(13), E1917–E1926 (2016)

    Article  ADS  Google Scholar 

  36. C.V. Iancu, E.R. Wright, J.B. Heymann, G.J. Jensen, A comparison of liquid nitrogen and liquid helium as cryogens for electron cryotomography. J. Struct. Biol. 153(3), 231–240 (2006)

    Article  Google Scholar 

  37. G. McMullan, S. Chen, R. Henderson, A.R. Faruqi, Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109(9), 1126–1143 (2009)

    Article  Google Scholar 

  38. X. Li et al., Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM. Nat. Methods 10(6), 584–590 (2013)

    Article  Google Scholar 

  39. M. Kuijper et al., FEI’s direct electron detector developments: Embarking on a revolution in cryo-TEM. J. Struct. Biol. 192(2), 179–187 (2015)

    Article  Google Scholar 

  40. Danev, R., Nagayama, K.: Chapter Fourteen—Phase Plates for Transmission Electron Microscopy, in Cryo-EM Part A Sample Preparation and Data Collection, vol. 481 (Academic Press, 2010), pp. 343–369

    Google Scholar 

  41. R. Danev, S. Kanamaru, M. Marko, K. Nagayama, Zernike phase contrast cryo-electron tomography. J. Struct. Biol. 171(2), 174–181 (2010)

    Article  Google Scholar 

  42. Y. Fukuda, U. Laugks, V. Lučić, W. Baumeister, R. Danev, Electron cryotomography of vitrified cells with a Volta phase plate. J. Struct. Biol. (2015)

    Google Scholar 

  43. R.C. Guerrero-Ferreira, E.R. Wright, Cryo-electron tomography of bacterial viruses. Virology 435(1), 179–186 (2013)

    Article  Google Scholar 

  44. W. Dai et al., Visualizing virus assembly intermediates inside marine cyanobacteria. Nature 502(7473), 707–710 (2013)

    Article  ADS  Google Scholar 

  45. D.N. Mastronarde, Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152(1), 36–51 (2005)

    Article  Google Scholar 

  46. Q.S. Zheng, M.B. Braunfeld, J.W. Sedat, D.A. Agard, An improved strategy for automated electron microscopic tomography. J. Struct. Biol. 147(2), 91–101 (2004)

    Article  Google Scholar 

  47. C. Suloway et al., Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151(1), 41–60 (2005)

    Article  Google Scholar 

  48. G.C. Lander et al., Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166(1), 95–102 (2009)

    Article  Google Scholar 

  49. C. Suloway et al., Fully automated, sequential tilt-series acquisition with Leginon. J. Struct. Biol. 167(1), 11–18 (2009)

    Article  Google Scholar 

  50. R. Henderson, The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28(2), 171–193 (1995)

    Article  Google Scholar 

  51. T.A.M. Bharat, C.J. Russo, J. Löwe, L.A. Passmore, S.H.W. Scheres, Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure 23(9), 1743–1753 (2015)

    Article  Google Scholar 

  52. F.K.M. Schur, W.J.H. Hagen, A. de Marco, J.A.G. Briggs, Determination of protein structure at 8.5 Å resolution using cryo-electron tomography and sub-tomogram averaging. J. Struct. Biol. 184(3), 394–400 (2013)

    Article  Google Scholar 

  53. A. Bartesaghi, F. Lecumberry, G. Sapiro, S. Subramaniam, Protein secondary structure determination by constrained single-particle cryo-electron tomography. Structure 20(12), 2003–2013 (2012)

    Article  Google Scholar 

  54. B. Hu, et al.: Visualization of the type III secretion sorting platform of Shigella flexneri. Proc. Natl. Acad. Sci. 201411610 (2015)

    Google Scholar 

  55. D. Stokes, G. Owen, An introduction to low dose electron tomography—from specimen preparation to data collection. Mod. Res. Educ. Top. Microsc 939–950 (2007)

    Google Scholar 

  56. R. Erni, Abberation-corrected Imaging in Transmission Electron Microscopy: An introduction. World Scientific (2010)

    Google Scholar 

  57. G.E. Murphy, G.J. Jensen, Electron cryotomography. BioTechniques, 43(4), 413, 415, 417 passim, (2007)

    Google Scholar 

  58. C.V. Iancu et al., A ‘flip-flop’ rotation stage for routine dual-axis electron cryotomography. J. Struct. Biol. 151(3), 288–297 (2005)

    Article  Google Scholar 

  59. V. Lucić, F. Förster, W. Baumeister, Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74, 833–865 (2005)

    Article  Google Scholar 

  60. R.A. Crowther, D.J. DeRosier, A. Klug, The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 317(1530), 319–340 (1970)

    Article  ADS  Google Scholar 

  61. W.O. Saxton, W. Baumeister, M. Hahn, Three-dimensional reconstruction of imperfect two-dimensional crystals. Ultramicroscopy 13(1–2), 57–70 (1984)

    Article  Google Scholar 

  62. W.J.H. Hagen, W. Wan, J.A.G. Briggs, Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197(2), 191–198 (2017)

    Article  Google Scholar 

  63. W. Wan, J.A.G. Briggs, Chapter thirteen—cryo-electron tomography and subtomogram averaging, in Methods in Enzymology, vol. 579, ed. by R.A. Crowther (Academic Press, 2016), pp. 329–367

    Google Scholar 

  64. M. Kudryashev, H. Stahlberg, D. Castaño-Díez, Assessing the benefits of focal pair cryo-electron tomography. J. Struct. Biol. (2011)

    Google Scholar 

  65. R.D. Leapman, Novel techniques in electron microscopy. Curr. Opin. Neurobiol. 14(5), 591–598 (2004)

    Article  Google Scholar 

  66. J. Kremer, D. Mastronarde, J. McIntosh, Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116(1), 71–76 (1996)

    Article  Google Scholar 

  67. H. Winkler, K.A. Taylor, Marker-free dual-axis tilt series alignment. J. Struct. Biol. 182(2), 117–124 (2013)

    Article  Google Scholar 

  68. T.R. Shaikh et al., SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nat. Protoc. 3(12), 1941–1974 (2008)

    Article  Google Scholar 

  69. S. Nickell et al., TOM software toolbox: acquisition and analysis for electron tomography. J. Struct. Biol. 149(3), 227–234 (2005)

    Article  Google Scholar 

  70. C. MessaoudiI, T. Boudier, C.O.S. Sorzano, S. Marco, TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinformatics 8, 288 (2007)

    Article  Google Scholar 

  71. F. Amat, F. Moussavi, L.R. Comolli, G. Elidan, K.H. Downing, M. Horowitz, Markov random field based automatic image alignment for electron tomography. J. Struct. Biol. 161(3), 260–275 (2008)

    Article  Google Scholar 

  72. J.I. Agulleiro, J.J. Fernandez, Fast tomographic reconstruction on multicore computers. Bioinforma. Oxf. Engl. 27(4), 582–583 (2011)

    Article  Google Scholar 

  73. J.J. Fernández, S. Li, R.A. Crowther, CTF determination and correction in electron cryotomography. Ultramicroscopy 106(7), 587–596 (2006)

    Article  Google Scholar 

  74. J.-J. Fernández, S. Li, An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. J. Struct. Biol. 144(1–2), 152–161 (2003)

    Article  Google Scholar 

  75. C.O.S. Sorzano et al., Marker-free image registration of electron tomography tilt-series. BMC Bioinformatics 10, 124 (2009)

    Article  Google Scholar 

  76. D. Castaño-Díez, M. Scheffer, A. Al-Amoudi, A.S. Frangakis, Alignator: a GPU powered software package for robust fiducial-less alignment of cryo tilt-series. J. Struct. Biol. 170(1), 117–126 (2010)

    Article  Google Scholar 

  77. J.-J. Fernandez et al., Removing contamination-induced reconstruction artifacts from cryo-electron tomograms. Biophys. J. 110(4), 850–859 (2016)

    Article  ADS  Google Scholar 

  78. K. Song, L.R. Comolli, M. Horowitz, Removing high contrast artifacts via digital inpainting in cryo-electron tomography: an application of compressed sensing. J. Struct. Biol. 178(2), 108–120 (2012)

    Article  Google Scholar 

  79. T. Grant, N. Grigorieff, Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife e06980 (2015)

    Google Scholar 

  80. C.A. Diebolder, F.G.A. Faas, A.J. Koster, R.I. Koning, Conical Fourier shell correlation applied to electron tomograms. J. Struct. Biol. 190(2), 215–223 (2015)

    Article  Google Scholar 

  81. J.-J. Fernandez, Computational methods for electron tomography. Micron 43(10), 1010–1030 (2012)

    Article  Google Scholar 

  82. P. van der Heide, X.-P. Xu, B.J. Marsh, D. Hanein, N. Volkmann, Efficient automatic noise reduction of electron tomographic reconstructions based on iterative median filtering. J. Struct. Biol. 158(2), 196–204 (2007)

    Article  Google Scholar 

  83. A.S. Frangakis, R. Hegerl, Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135(3), 239–250 (2001)

    Article  Google Scholar 

  84. R. Narasimha et al., Evaluation of denoising algorithms for biological electron tomography. J. Struct. Biol. 164(1), 7–17 (2008)

    Article  Google Scholar 

  85. G. Cardone, K. Grünewald, A.C. Steven, A resolution criterion for electron tomography based on cross-validation. J. Struct. Biol. 151(2), 117–129 (2005)

    Article  Google Scholar 

  86. P.A. Penczek, Chapter Three—Resolution Measures in Molecular Electron Microscopy, in Cryo-EM, Part B: 3-D Reconstruction, vol. 482 (Academic Press, 2010), pp. 73–100

    Google Scholar 

  87. D. Castaño-Díez, M. Kudryashev, M. Arheit, H. Stahlberg, Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J. Struct. Biol. 178(2), 139–151 (2012)

    Article  Google Scholar 

  88. D. Nicastro, C. Schwartz, J. Pierson, R. Gaudette, M.E. Porter, J.R. McIntosh, The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313(5789), 944–948 (2006)

    Article  ADS  Google Scholar 

  89. S.H.W. Scheres, S. Chen, Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9(9), 853–854 (2012)

    Article  Google Scholar 

  90. F. Förster, B.-G. Han, and M. Beck, “Chapter Eleven—Visual Proteomics, in Cryo-EM, Part C: Analyses, Interpretation, and Case studies, vol. 483, (Academic Press, 2010), pp. 215–243

    Google Scholar 

  91. Z. Li, M. Trimble, Y. Brun, G. Jensen, The structure of FtsZ filaments in vivo suggests a force-generating role in cell division. EMBO J. 26, 4694–4708 (2007)

    Article  Google Scholar 

  92. Y.-W. Chang, et al., Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat. Methods, vol. advance online publication, (2014)

    Google Scholar 

  93. Q. Wang, C.P. Mercogliano, J. Löwe, A ferritin-based label for cellular electron cryotomography. Struct. Lond. Engl. 1993 19(2), 147–154 (2011)

    Google Scholar 

  94. M. Beeby, structural diversity of bacterial flagellar motors. Presented at the MicroMorning, Caltech, (14-Jul-2011)

    Google Scholar 

  95. P. Abrusci et al., Architecture of the major component of the type III secretion system export apparatus. Nat. Struct. Mol. Biol. 20(1), 99–104 (2013)

    Article  MathSciNet  Google Scholar 

  96. K. Song et al., In situ localization of N and C termini of subunits of the flagellar nexin-dynein regulatory complex (N-DRC) using SNAP tag and cryo-electron tomography. J. Biol. Chem. 290(9), 5341–5353 (2015)

    Article  Google Scholar 

  97. S. Velankar et al., PDBe: improved accessibility of macromolecular structure data from PDB and EMDB. Nucleic Acids Res. 44(D1), D385–D395 (2016)

    Article  Google Scholar 

  98. A. Iudin, P.K. Korir, J. Salavert-Torres, G.J. Kleywegt, A. Patwardhan, EMPIAR: a public archive for raw electron microscopy image data. Nat. Methods 13(5), 387–388 (2016)

    Article  Google Scholar 

  99. A. Nans, H.R. Saibil, R.D. Hayward, Pathogen-host reorganisation during Chlamydia invasion revealed by cryo-electron tomography. Cell. Microbiol. p. n/a-n/a, (2014)

    Google Scholar 

  100. A. Kawamoto et al., Common and distinct structural features of Salmonella injectisome and flagellar basal body. Sci. Rep. 3, 3369 (2013)

    Article  Google Scholar 

  101. S. Asano et al., A molecular census of 26S proteasomes in intact neurons. Science 347(6220), 439–442 (2015)

    Article  ADS  Google Scholar 

  102. B.D. Engel, M. Schaffer, S. Albert, S. Asano, J.M. Plitzko, W. Baumeister, In situ structural analysis of Golgi intracisternal protein arrays. Proc. Natl. Acad. Sci. 112(36), 11264–11269 (2015)

    Article  ADS  Google Scholar 

  103. C. Hagen et al., Structural basis of vesicle formation at the inner nuclear membrane. Cell 163(7), 1692–1701 (2015)

    Article  Google Scholar 

  104. T.A.M. Bharat et al., Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells. PLoS Biol. 9(11), e1001196 (2011)

    Article  Google Scholar 

  105. F.K.M. Schur, R.A. Dick, W.J.H. Hagen, V.M. Vogt, J.A.G. Briggs, The structure of immature virus-like rous sarcoma virus gag particles reveals a structural role for the p10 domain in assembly. J. Virol. 89(20), 10294–10302 (2015)

    Article  Google Scholar 

  106. W. Dai, C. Fu, H.A. Khant, S.J. Ludtke, M.F. Schmid, W. Chiu, Zernike phase-contrast electron cryotomography applied to marine cyanobacteria infected with cyanophages. Nat. Protoc. 9(11), 2630–2642 (2014)

    Article  Google Scholar 

  107. L. Gan, S. Chen, G.J. Jensen, Molecular organization of Gram-negative peptidoglycan. Proc. Natl. Acad. Sci. 105(48), 18953–18957 (2008)

    Article  ADS  Google Scholar 

  108. M. Beeby, J.C. Gumbart, B. Roux, G.J. Jensen, Architecture and assembly of the Gram-positive cell wall. Mol. Microbiol. 44(4), 664–672 (2013)

    Article  Google Scholar 

  109. E.I. Tocheva, E.G. Matson, D.M. Morris, F. Moussavi, J.R. Leadbetter, G.J. Jensen, Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell 146(5), 799–812 (2011)

    Article  Google Scholar 

  110. K.C. Huang, R. Mukhopadhyay, B. Wen, Z. Gitai, N.S. Wingreen, Cell shape and cell-wall organization in Gram-negative bacteria. Proc. Natl. Acad. Sci., p. pnas.0805309105 (2008)

    Google Scholar 

  111. L.T. Nguyen, J.C. Gumbart, M. Beeby, G.J. Jensen, Coarse-grained simulations of bacterial cell wall growth reveal that local coordination alone can be sufficient to maintain rod shape. Proc. Natl. Acad. Sci. 112(28), E3689–E3698 (2015)

    Article  ADS  Google Scholar 

  112. M. Pilhofer, G.J. Jensen, The bacterial cytoskeleton: more than twisted filaments. Curr. Opin. Cell Biol

    Google Scholar 

  113. J. Salje, F. van den Ent, P. de Boer, J. Löwe, Direct membrane binding by bacterial actin MreB. Mol. Cell 43(3), 478–487 (2011)

    Article  Google Scholar 

  114. F. van den Ent, T. Izoré, T.A. Bharat, C.M. Johnson, J. Löwe, Bacterial actin MreB forms antiparallel double filaments. eLife 3, e02634, (2014)

    Google Scholar 

  115. E.C. Garner, R. Bernard, W. Wang, X. Zhuang, D. Z. Rudner, T. Mitchison, Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science (2011)

    Google Scholar 

  116. J. Domínguez-Escobar, A. Chastanet, A.H. Crevenna, V. Fromion, R. Wedlich-Söldner, R. Carballido-López, Processive movement of MreB-associated cell wall biosynthetic complexes in Bacteria. Science 333(6039), 225–228 (2011)

    Article  ADS  Google Scholar 

  117. S. van Teeffelen et al., The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl. Acad. Sci. 108(38), 15822–15827 (2011)

    Article  ADS  Google Scholar 

  118. P. Szwedziak, Q. Wang, T.A.M. Bharat, M. Tsim, J. Löwe, Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife 3, e04601 (2014)

    Google Scholar 

  119. A. Briegel, D. Dias, Z. Li, R. Jensen, A. Frangakis, G. Jensen, Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography. Mol. Microbiol. 62, 5–14 (2006)

    Article  Google Scholar 

  120. M. Ingerson-Mahar, A. Briegel, J.N. Werner, G.J. Jensen, Z. Gitai, The metabolic enzyme CTP synthase forms cytoskeletal filaments. Nat. Cell Biol. 12(8), 739–746 (2010)

    Article  Google Scholar 

  121. M. Beck, V. Lučić, F. Förster, W. Baumeister, O. Medalia, Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449(7162), 611–615 (2007)

    Article  ADS  Google Scholar 

  122. J. Kosinski et al., Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352(6283), 363–365 (2016)

    Article  ADS  Google Scholar 

  123. A. Rigort et al., Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc. Natl. Acad. Sci. 109(12), 4449–4454 (2012)

    Article  ADS  Google Scholar 

  124. M. Eibauer, M. Pellanda, Y. Turgay, A. Dubrovsky, A. Wild, O. Medalia, Structure and gating of the nuclear pore complex. Nat. Commun. 6, 7532 (2015)

    Article  ADS  Google Scholar 

  125. M. Zwerger, M. Eibauer, O. Medalia, Insights into the gate of the nuclear pore complex. Nucl. Austin Tex 7(1), 1–7 (2016)

    Google Scholar 

  126. A. von Appen et al., In situ structural analysis of the human nuclear pore complex. Nature 526(7571), 140–143 (2015)

    Article  ADS  Google Scholar 

  127. J.A. Berriman, P.B. Rosenthal, Paraxial charge compensator for electron cryomicroscopy. Ultramicroscopy 116, 106–114 (2012)

    Article  Google Scholar 

  128. C.J. Russo, L.A. Passmore, Controlling protein adsorption on graphene for cryo-EM using low-energy hydrogen plasmas. Nat. Methods 11(6), 649–652 (2014)

    Article  Google Scholar 

  129. R.S. Pantelic, J.C. Meyer, U. Kaiser, W. Baumeister, J.M. Plitzko, Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. J. Struct. Biol. 170(1), 152–156 (2010)

    Article  Google Scholar 

  130. T. Jain, SpotItOn: a new approach to EM specimen preparation. Presented at the NRAMM, Scripps, San Diego, California, USA (11-Dec-2012)

    Google Scholar 

  131. A. Müller, M. Beeby, A.W. McDowall, J. Chow, G. J. Jensen, W.M. Clemons, Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni. MicrobiologyOpen, p. n/a-n/a, (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bonnie Chaban, Peter Rosenthal, and Louie Henderson for insightful comments. This work has been supported by BBSRC grant BB/L023091/1 to MB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan Beeby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferreira, J.L., Matthews-Palmer, T.R.S., Beeby, M. (2018). Electron Cryo-Tomography. In: Hanssen, E. (eds) Cellular Imaging. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-68997-5_3

Download citation

Publish with us

Policies and ethics