Skip to main content

Direct Printing of Light-Emitting Devices on Textile Substrates

  • Chapter
  • First Online:
Narrow and Smart Textiles

Abstract

Smart textiles are a rapidly expanding field in the world of textiles, announcing a new and intriguing era. Different functionalities can be added to the textile to make the textile smart and intelligent. One of these functionalities is the addition of light-emitting layers or devices that can be incorporated into the textiles. These light-emitting textiles find a broad application in the field of interior and exterior design and wearable applications. Depending on the application, two light-emitting devices, the alternating current powder electroluminescent (ACPEL) device and the organic light emitting diode (OLED), both consisting out of a stack of thin layers, can be directly printed on top of the textile substrates. With its relatively high AC voltage of 50–200 V, the ACPEL device is more suited for interior and exterior applications while the OLED with a low DC voltage of 3–5 V is a perfect candidate for wearable applications. To maintain typical textile properties such as flexibility, breathability and drapability, different smart designs of the ACPEL devices are suggested, screen printed and analysed. More challenging is to apply the OLEDs on textile substrates. The very thin nanometre range layers make a planarizing layer to smoothen the textile surface indispensable. Different techniques such as spin coating, ultrasonic spray coating, inkjet printing and thermal evaporation are used to apply the complete OLED stack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krasnov, A. N. (2003). Electroluminescent displays: History and lessons learned. Displays, 24(2), 73–79.

    Article  CAS  Google Scholar 

  2. Destriau, G. (1936). AC electroluminescence in ZnS. J Chem. Phys., 33, 587.

    CAS  Google Scholar 

  3. Peters, T., Pappalardo, R., & Hunt, R. (1993). Lamp phosphors. Solid State Luminescence.

    Google Scholar 

  4. Pankove, J. I. (1977). Electroluminescence.

    Google Scholar 

  5. Tang, C. W., & Vanslyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51(12), 913–915.

    Article  CAS  Google Scholar 

  6. Burroughes, J. H., et al. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347, 539–541.

    Article  CAS  Google Scholar 

  7. Gustafsson, G., Cao, Y., Treacy, G. M., Klavetter, F., Colaneri, N., & Heeger, A. J. (1992). Flexible light-emitting-diodes made from soluble conducting polymers. Nature, 357, 477–479.

    Article  CAS  Google Scholar 

  8. de Vos, M., Torah, R., & Tudor, J. (2016). Dispenser printed electroluminescent lamps on textiles for smart fabric applications. Smart Materials and Structures, 25(4), 45016.

    Article  Google Scholar 

  9. Hu, B., Li, D., Ala, O., Manandhar, P., Fan, Q., Kasilingam, D., et al. (2011). Textile-based flexible electroluminescent devices. Advanced Functional Materials, 21(2), 305–311.

    Article  CAS  Google Scholar 

  10. TexOLED: Textile-Integrated and Textile-Based LEDs and OLEDs. (2007).

    Google Scholar 

  11. Janietz, S., Gruber, B., Schattauer, S., & Schulze, K. (2012). Integration of OLEDs in textiles. Advances in Science and Technology, 80, 14–21.

    Article  Google Scholar 

  12. O’Connor, B., An, K. H., Zhao, Y., Pipe, K. P., & Shtein, M. (2007). Fiber Shaped Light Emitting Device. Advanced Materials, 19(22), 3897–3900.

    Google Scholar 

  13. Cochrane, C., Meunier, L., Kelly, F. M., & Koncar, V. (2011). Flexible displays for smart clothing : Part I—Overview, 36(December), 422–428.

    Google Scholar 

  14. Kim, W., Kwon, S., Lee, S.-M., Kim, J. Y., Han, Y., Kim, E., … Park, B.-C. (2013). Soft fabric-based flexible organic light-emitting diodes. Organic Electronics, 14(11), 3007–3013.

    Google Scholar 

  15. Withnall, R., Member, S. I. D., Harris, P. G., Ireland, T. G., & Marsh, P. J. (2011). AC powder electroluminescent displays, 798–810.

    Google Scholar 

  16. Fischer, A. G. (1963). Electroluminescent Lines in ZnS Powder Particles, II. Models and Comparison with Experience. Journal of the Electrochemical Society, 110(7), 733–748.

    Google Scholar 

  17. Kitai, A. (2008). Luminescent materials and applications. New York: Wiley.

    Google Scholar 

  18. Vangerven, T. (2011). Characterization of printable electroluminescent devices. XIOS Hogeschool Limburg.

    Google Scholar 

  19. Lybye, D. (2004). Coatings technology fundamentals: Screen printing, 1–4.

    Google Scholar 

  20. Scott, J. C., Malliaras, G. G., Bozano, L., Carter, S. U. E. A., & Ramos, S. (2000). The physics of organic light-emitting devices, 558, 499–505.

    CAS  Google Scholar 

  21. Fundamentals, O. (n.d.). OLED fundamentals.

    Google Scholar 

  22. Thompson, B. J. (2005). Organic diodes.

    Google Scholar 

  23. Troia, M., et al. (2015). T. Hirth Oxygen barrier layers for flexible OLED devices. PT-17 2015, Kiel, Germany.

    Google Scholar 

  24. Lybye, D. (2004). Coatings technology fundamentals: Deposition, chemical vapor deposition (pp. 1–30).

    Google Scholar 

  25. Martin, P. M. (2009). Handbook of deposition technologies for films and coatings - Science, applications and technology.

    Google Scholar 

  26. Khouchaf, L., Mehta, R., Renaud Podor, J. R., H.-P. B., Zhongwei Chen, Y. Y., & Kidd, T. E. (2012). Scanning electron. In V. Kazmiruk (Ed.).

    Google Scholar 

  27. Hugo Knecht, N. F. (2006). FX3300 Luftdurchlässigkeits-Prüfgerät IV, Scherzenbach: Textest AG.

    Google Scholar 

  28. Wuu, D. S., et al. (2006). Transparent barrier coatings for flexible organic light-emitting diode applications. Chemical Vapor Deposition, 12, 220–224.

    Google Scholar 

  29. Troia, M., et al. (2015). Oxygen barrier layers for flexible OLED devices. PT-17 2015, Kiel, Germany.

    Google Scholar 

  30. Gilissen, K., et al. (2015). Ultrasonic spray coating as deposition technique for the light-emitting layer in polymer LEDs. Organic Electronics, 20(February), 31–35.

    Google Scholar 

  31. Han, T.-H., Jeong, S.-H., Lee, Y., Seo, H.-K., Kwon, S.-J., Park, M.-H., et al. (2015). Flexible transparent electrodes for organic light-emitting diodes. Journal of Information Display, 316(March 2015).

    Google Scholar 

  32. Vandevenne, G., Marchal, W., Verboven, I., … Drijkoningen, J. (2016). A study on the thermal sintering process of silver nanoparticle inkjet inks to achieve smooth and highly conducting silver layers. PSSA, 213(6), 1403–1409.

    Google Scholar 

  33. Van Der Pauw, J. (1958). A method of measuring specific resistivity and hall effect of discs of arbitrary shape.pdf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Deferme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verboven, I., Deferme, W. (2018). Direct Printing of Light-Emitting Devices on Textile Substrates. In: Kyosev, Y., Mahltig, B., Schwarz-Pfeiffer, A. (eds) Narrow and Smart Textiles. Springer, Cham. https://doi.org/10.1007/978-3-319-69050-6_23

Download citation

Publish with us

Policies and ethics