Skip to main content

Proteomic Research in Farm Animal Serum and Plasma

  • Chapter
  • First Online:
Proteomics in Domestic Animals: from Farm to Systems Biology
  • 1186 Accesses

Abstract

Proteomics is one of the modern tools for in-depth study of the protein and peptide composition of complex protein mixtures and also has major applications in the field of animal science. Blood-derived fluids such as serum and plasma are rather unique biological samples as their protein content is contributed by the summation of all cellular proteome sets in the organism. Thus, they are a valuable source of information, reflecting the physiopathological status of the individuals. Being easy to obtain, they were and still are often the samples of choice to study physiology, investigate or diagnose diseases, as well as monitor and compare the influence of potentially harmful substances in different species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2DE:

Two-dimensional electrophoresis

Apo A-I:

Apolipoprotein A-I

DIGE:

Fluorescence difference gel electrophoresis

GPA:

Growth-promoting agent

Hp:

Haptoglobin

MS:

Mass spectrometry

PTM:

Posttranslational modification

SAA:

Serum amyloid A

SELDI:

Surface-enhanced laser desorption/ionization

SRM:

Selected reaction monitoring

References

  • Aich P, Jalal S, Czuba C et al (2007) Comparative approaches to the investigation of responses to stress and viral infection in cattle. OMICS 11:413–434

    Article  PubMed  Google Scholar 

  • Aich P, Babiuk LA, Potter AA et al (2009) Biomarkers for prediction of bovine respiratory disease outcome. OMICS 13:199–209

    Article  CAS  PubMed  Google Scholar 

  • Almeida AM, Bassols A, Bendixen E et al (2015) Animal board invited review: advances in proteomics for animal and food sciences. Animal 9:1–17

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Fauste I, Andrés M, Iturralde M et al (2012) Proteomic characterization by 2-DE in bovine serum and whey from healthy and mastitis affected farm animals. J Proteomics 75:3015–3030

    Article  CAS  PubMed  Google Scholar 

  • Altelaar AF, Heck AJ (2012) Trends in ultrasensitive proteomics. Curr Opin Chem Biol 16:206–213

    Article  CAS  PubMed  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  CAS  PubMed  Google Scholar 

  • Anderson NL, Polanski M, Pieper R et al (2004) The human plasma proteome. A nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3:311–326

    Article  CAS  PubMed  Google Scholar 

  • Bandow JE (2010) Comparison of protein enrichment strategies for proteome analysis of plasma. Proteomics 10:1416–1425

    Article  CAS  PubMed  Google Scholar 

  • Bantscheff M, Lemeer S, Savitski MM et al (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404:939–965

    Article  CAS  PubMed  Google Scholar 

  • Bell LN, Lee L, Saxena R et al (2010) Serum proteomic analysis of diet-induced steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Am J Physiol Gastrointest Liver Physiol 298:G746–G754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I (2011) Farm animal proteomics—a review. J Proteomics 74:282–293

    Article  CAS  PubMed  Google Scholar 

  • Bislev SL, Deutsch EW, Sun Z et al (2012a) A Bovine PeptideAtlas of milk and mammary gland proteomes. Proteomics 12:2895–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bislev SL, Kusebauch U, Codrea MC et al (2012b) Quantotypic properties of QconCAT peptides targeting bovine host response to Streptococcus uberis. J Proteome Res 11:1832–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braceland M, Bickerdike R, Tinsley J et al (2013) The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3). J Proteomics 94:423–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brameld JM, Parr T (2016) Improving efficiency in meat production. Proc Nutr Soc 75:242–246

    Article  CAS  PubMed  Google Scholar 

  • Brown K, Uwiera RRE, Kalmokoff ML et al (2017) Antimicrobial growth promoter use in livestock: a requirement to understand their modes of action to develop effective alternatives. Int J Antimicrob Agents 49:12–24

    Article  CAS  PubMed  Google Scholar 

  • Brunt J, Hansen R, Jamieson DJ et al (2008) Proteomic analysis of rainbow trout (Oncorhynchus mykiss, Walbaum) serum after administration of probiotics in diets. Vet Immunol Immunopathol 121:199–205

    Article  CAS  PubMed  Google Scholar 

  • Cairoli F, Battocchio M, Veronesi MC et al (2006) Serum protein pattern during cow pregnancy: acute-phase proteins increase in the peripartum period. Electrophoresis 27:1617–1625

    Article  CAS  PubMed  Google Scholar 

  • Chiaradia E, Avellini L, Tartaglia M et al (2012) Proteomic evaluation of sheep serum proteins. BMC Vet Res 8:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins LA, Olivier M (2010) Quantitative comparison of lipoprotein fractions derived from human plasma and serum by liquid chromatography-tandem mass spectrometry. Proteome Sci 8:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Craig R, Cortens JP, Beavis RC (2004) Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3:1234–1242

    Article  CAS  PubMed  Google Scholar 

  • de Almeida AM, Bendixen E (2012) Pig proteomics: a review of a species in the crossroad between biomedical and food sciences. J Proteomics 75:4296–4314

    Article  PubMed  Google Scholar 

  • Della Donna L, Ronci M, Sacchetta P et al (2009) A food safety control low mass-range proteomics platform for the detection of illicit treatments in veal calves by MALDI-TOF-MS serum profiling. Biotechnol J 4:1596–1609

    Article  CAS  PubMed  Google Scholar 

  • Deutsch EW, Lam H, Aebersold R (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep 9:429–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Girolamo F, D’Amato A, Lante I et al (2014) Farm animal serum proteomics and impact on human health. Int J Mol Sci 15:15396–15411

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong SW, Zhang SD, Wang DS et al (2015) Comparative proteomics analysis provide novel insight into laminitis in Chinese Holstein cows. BMC Vet Res 11:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Draisci R, Montesissa C, Santamaria B et al (2007) Integrated analytical approach in veal calves administered the anabolic androgenic steroids boldenone and boldione: urine and plasma kinetic profile and changes in plasma protein expression. Proteomics 7:3184–3193

    Article  CAS  PubMed  Google Scholar 

  • Eckersall PD (2008) Chapter 5: Proteins, proteomics, and the dysproteinemias. In: Kaneko JJ, Harvey JW, Bruss ML (eds) Clinical biochemistry of domestic animals, 6th edn. Elsevier Academic Press, Amsterdam, pp 117–156

    Chapter  Google Scholar 

  • Eckersall PD, Bell R (2010) Acute phase proteins: biomarkers of infection and inflammation in veterinary medicine. Vet J 185:23–27

    Article  CAS  PubMed  Google Scholar 

  • Eckersall PD, de Almeida AM, Miller I (2012) Proteomics, a new tool for farm animal science. J Proteomics 75:4187–4189

    Article  CAS  PubMed  Google Scholar 

  • Faulkner S, Elia G, Hillard M et al (2011) Immunodepletion of albumin and immunoglobulin G from bovine plasma. Proteomics 11:2329–2335

    Article  CAS  PubMed  Google Scholar 

  • Faulkner S, Elia G, Mullen MP et al (2012) A comparison of the bovine uterine and plasma proteome using iTRAQ proteomics. Proteomics 12:2014–2023

    Article  CAS  PubMed  Google Scholar 

  • Fernández C, Santos HM, Ruíz-Romero C (2011) A comparison of depletion versus equalization for reducing high-abundance proteins in human serum. Electrophoresis 2011(32):2966–2974

    Article  Google Scholar 

  • Fuquay JW (1981) Heat stress as it affects animal production. J Anim Sci 52:64–74

    Article  Google Scholar 

  • Gevaert K, Vandekerckhove J (eds) (2011) Gel-free proteomics—Methods and protocols, Methods in Molecular Biology, vol 753. Springer, Heidelberg

    Google Scholar 

  • Gianazza E, Miller I, Palazzolo L et al (2016) With or without you — proteomics with or without major plasma/serum proteins. J Proteomics 140:62–80

    Article  CAS  PubMed  Google Scholar 

  • Gilbert ER, Cox CM, Williams PM et al (2011) Eimeria species and genetic background influence the serum protein profile of broilers with coccidiosis. PLoS ONE 6:e14636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grubbs JK, Dekkers JCM, Huff-Lonergan E et al (2016) Identification of potential serum biomarkers to predict feed efficiency in young pigs. J Anim Sci 94:1482

    Article  CAS  PubMed  Google Scholar 

  • Gruys E, Toussaint MJM, Niewold T et al (2006) Monitoring health by values of acute phase proteins. Acta Histochem 108:229–232

    Article  PubMed  Google Scholar 

  • Guglielmetti C, Mazza M, Pagano M et al (2014) Identification by a proteomic approach of a plasma protein as a possible biomarker of illicit dexamethasone treatment in veal calves. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31:833–838

    Article  CAS  PubMed  Google Scholar 

  • Hassis ME, Niles RK, Braten MN et al (2015) Evaluating the effects of preanalytical variables on the stability of the human plasma proteome. Anal Biochem 478:14–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heegaard PMH, Miller I, Sorensen NS et al (2013) Pig α1-acid glycoprotein: characterization and first description in any species as a negative acute phase protein. PLoS One 8:e68110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henning AK, Groschup MH, Mettenleiter TC (2014) Analysis of the bovine plasma proteome by matrix-assisted laser desorption/ionisation time-of-flight tandem mass spectrometry. Vet J 199:175–180

    Article  CAS  PubMed  Google Scholar 

  • Henning A, Albrecht D, Riedel K et al (2015) An alternative method for serum protein depletion/enrichment by precipitation at mildly acidic pH values and low ionic strength. Proteomics 15:1935–1940

    Article  CAS  PubMed  Google Scholar 

  • Hesselager MO, Codrea MC, Sun Z et al (2016) The Pig PeptideAtlas: a resource for systems biology in animal production and biomedicine. Proteomics 16:634–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holewinski JR, Jin Z, Powell MJ et al (2013) A fast and reproducible method for albumin isolation and depletion from serum and cerebrospinal fluid. Proteomics 13:743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoving S, Voshol H, van Oostrum J (2000) Towards high performance two-dimensional gel electrophoresis using ultrazoom gels. Electrophoresis 21:2617–2621

    Article  CAS  PubMed  Google Scholar 

  • Hsieh SY, Chen RK, Pan YH et al (2006) Systematical evaluation of the effects of sample collection procedures on low molecular- weight serum/plasma proteome profiling. Proteomics 6:3189–3198

    Article  CAS  PubMed  Google Scholar 

  • Huang SY, Lin JH, Chen YH et al (2006) Analysis of chicken serum proteome and differential protein expression during development in single-comb White Leghorn hens. Proteomic 6:2217–2224

    Article  CAS  Google Scholar 

  • Jmeian Y, El Rassi Z (2009) Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids for in-depth proteomics analysis. Electrophoresis 30:249–261

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim M, So E et al (2007) Comparison of proteomes in various human plasma preparations by two-dimensional gel electrophoresis. J Biochem Biophys Methods 70:619–625

    Article  CAS  PubMed  Google Scholar 

  • Kinkead RA, Elliott CT, Cannizzo FT et al (2015) Proteomic identification of plasma proteins as markers of growth promoter abuse in cattle. Anal Bioanal Chem 407:4495–4507

    Article  CAS  PubMed  Google Scholar 

  • Koene MG, Mulder HA, Stockhofe-Zurwieden N et al (2012) Serum protein profiles as potential biomarkers for infectious disease status in pigs. BMC Vet Res 8:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Qian W, Mottaz HM et al (2006) Evaluation of multiprotein immunoaffinity subtraction for plasma proteomics and candidate biomarker discovery using mass spectrometry. Mol Cell Proteomics 5:2167–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Afonso L, Altman E et al (2008) O-acetylation of sialic acids in N-glycans of Atlantic salmon (Salmo salar) serum is altered by handling stress. Proteomics 8:2849–2857

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang K, Zheng H et al (2011) Proteomics analysis of porcine serum proteins by LC-MS/MS after foot-and-mouth disease virus (FMDV) infection. J Vet Med Sci 73:1569–1572

    Article  CAS  PubMed  Google Scholar 

  • Mansor R, Mullen W, Albalat A et al (2013) A peptidomic approach to biomarker discovery for bovine mastitis. J Proteomics 85:89–98

    Article  CAS  PubMed  Google Scholar 

  • Marco-Ramell A, Bassols A (2010) Enrichment of low-abundance proteins from bovine and porcine serum samples for proteomic studies. Res Vet Sci 89:340–343

    Article  CAS  PubMed  Google Scholar 

  • Marco-Ramell A, Pato R, Peña R et al (2011) Identification of serum stress biomarkers in pigs housed at different stocking densities. Vet J 190:e66–e71

    Article  CAS  PubMed  Google Scholar 

  • Marco-Ramell A, Arroyo L, Saco Y et al (2012) Proteomic analysis reveals oxidative stress response as the main adaptative physiological mechanism in cows under different production systems. J Proteomics 75:4399–4411

    Article  CAS  PubMed  Google Scholar 

  • Marco-Ramell A, Dyrlund TF, Bislev S et al (2013) Targeted proteomics as a tool for porcine acute phase proteins measurements. In: de Almeida A, Eckersall D, Bencurova E, Dolinska S, Mlynarcik P, Vincova M, Bhide M (eds) Farm animal proteomics. Wageningen Academic Publishers, Wageningen, pp 217–220

    Google Scholar 

  • Marco-Ramell A, Miller I, Nöbauer K et al (2014) Proteomics on porcine haptoglobin and IgG/IgA show protein species distribution and glycosylation pattern to remain similar in PCV2-SD infection. J Proteomics 101:205–216

    Article  CAS  PubMed  Google Scholar 

  • Marco-Ramell A, Hummel K, Razzazi-Fazeli E et al (2015) Concentration and pattern changes of porcine serum apolipoprotein A-I in four different infectious diseases. Electrophoresis 36:543–551

    Article  CAS  PubMed  Google Scholar 

  • Marco-Ramell A, Arroyo L, Peña R et al (2016) Biochemical and proteomic analyses of the physiological response induced by individual housing in gilts provide new potential stress markers. BMC Vet Res 12:265

    Article  PubMed  PubMed Central  Google Scholar 

  • McGrath TF, van Meeuwen JA, Massart AC et al (2013) Effect-based proteomic detection of growth promoter abuse. Anal Bioanal Chem 405:1171–1179

    Article  CAS  PubMed  Google Scholar 

  • Meier F, Seidel B, Geserick G et al (1980) Haptoglobintypisierung von Serumproben ausgewählter Säugetiere mittels Stärkegelelektrophorese. Mh Vet-Med 35:617–620

    Google Scholar 

  • Miller I (2011) Protein Separation Strategies. In: Eckersall PD, Whitfield PD (eds) Methods in animal proteomics. Wiley-Blackwell, Oxford, pp 41–76

    Chapter  Google Scholar 

  • Miller I (2012) Application of 2D-DIGE in animal proteomics. Methods Mol Biol 854:373–396

    Article  CAS  PubMed  Google Scholar 

  • Miller I, Wait R, Sipos W et al (2009) A proteomic reference map for pig serum proteins as a prerequisite for diagnostic applications. Res Vet Sci 86:362–367

    Article  CAS  PubMed  Google Scholar 

  • Miller I, Gianazza E, Gemeiner M (2010) Any use in proteomics for low-tech approaches? Detecting fibrinogen chains of different animal species in two-dimensional electrophoresis patterns. J Chromatogr B 878:2314–2318

    Article  CAS  Google Scholar 

  • O’Reilly EL, Eckersall PD (2014) Acute phase proteins: a review of their function, behaviour and measurement in chickens. Worlds Poult Sci J 70:27–44

    Article  Google Scholar 

  • Oliveira BM, Coorssen JR, Martins-de-Souza D (2014) 2DE: the phoenix of proteomics. J Proteomics 104:140–150

    Article  CAS  PubMed  Google Scholar 

  • Poon TCW (2007) Opportunities and limitations of SELDI-TOF-MS in biomedical research: practical advices. Exp Rev Proteomics 4:51–65

    Article  CAS  Google Scholar 

  • Puangpila C, Mayadunne E, El Rassi Z (2015) Liquid phase based separation systems for depletion, prefractionation, and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis—an update covering the period 2011–2014. Electrophoresis 36:238–252

    Article  CAS  PubMed  Google Scholar 

  • Righetti PG, Boschetti E, Lomas L et al (2006) Protein equalizer technology: the quest for a “democratic proteome”. Proteomics 6:3980–3992

    Article  CAS  PubMed  Google Scholar 

  • Rødgaard T, Stagsted J, Christoffersen BØ et al (2013) Orosomucoid expression profiles in liver, adipose tissues and serum of lean and obese domestic pigs, Göttingen minipigs and Ossabaw minipigs. Vet Immunol Immunopathol 151:325–330

    Article  PubMed  Google Scholar 

  • Rogowska-Wrzesinska A, Le Bihan M, Thaysen-Andersen M et al (2013) 2D gels still have a niche in proteomics. J Proteomics 88:4–13

    Article  CAS  PubMed  Google Scholar 

  • Seth M, Lamont EA, Janagama HK et al (2009) Biomarker discovery in subclinical mycobacterial infections of cattle. PloS One 4:e5478

    Article  PubMed  PubMed Central  Google Scholar 

  • Skrzypczak WF, Ozgo M, Lepczynski A et al (2011) Defining the blood plasma protein repertoire of seven day old dairy calves - a preliminary study. J Physiol Pharmacol 62:313–319

    CAS  PubMed  Google Scholar 

  • Soares R, Franco C, Pires E et al (2012) Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species. J Proteomics 75:4190–4206

    Article  CAS  PubMed  Google Scholar 

  • Soler L, Molenaar A, Merola N et al (2013) Why working with porcine circulating serum amyloid A is a pig of a job. J Theor Biol 317:119–125

    Article  CAS  PubMed  Google Scholar 

  • Soler L, Miller I, Hummel K et al (2016) Growth promotion in pigs by oxytetracycline coincides with down regulation of serum inflammatory parameters and of hibernation-associated protein HP-27. Electrophoresis 37:1277–1286

    Article  CAS  PubMed  Google Scholar 

  • Stalder D, Haeberli A, Heller M (2008) Evaluation of reproducibility of protein identification results after multidimensional human serum protein separation. Proteomics 8:414–424

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Shi Z, Guo H et al (2011) Proteomic analysis of swine serum following highly virulent classical swine fever virus infection. Virol J 8:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun D, Zhang H, Guo D et al (2013) Shotgun proteomic analysis of plasma from dairy cattle suffering from footrot: characterization of potential disease-associated factors. PLoS ONE 8:e55973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talamo F, D’Ambrosio C, Arena S et al (2003) Proteins from bovine tissues and biological fluids: defining a reference electrophoresis map for liver, kidney, muscle, plasma and red blood cells. Proteomics 3:440–460

    Article  CAS  PubMed  Google Scholar 

  • Tammen H, Schulte I, Hess R et al (2005) Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics 5:3414–3422

    Article  CAS  PubMed  Google Scholar 

  • Thongboonkerd V, Chiangjong W, Mares J et al (2009) Altered plasma proteome during an early phase of peritonitis-induced sepsis. Clin Sci (Lond) 116:721–730

    Article  CAS  Google Scholar 

  • Timms JF, Cramer R (2008) Difference gel electrophoresis. Proteomics 8:4886–4897

    Article  CAS  PubMed  Google Scholar 

  • Turk R, Piras C, Kovačić M et al (2012) Proteomics of inflammatory and oxidative stress response in cows with subclinical and clinical mastitis. J Proteomics 75:4412–4428

    Article  CAS  PubMed  Google Scholar 

  • Vizcaino JA, Cote R, Reisinger F et al (2009) A guide to the proteomics identifications database proteomics data repository. Proteomics 9:4276–4283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wait R, Miller I, Eberini I et al (2002) Strategies for proteomics with incompletely characterized genomes: the proteome of Bos taurus serum. Electrophoresis 23:3418–3427

    Article  CAS  PubMed  Google Scholar 

  • Westbrook JA, Yan JX, Wait R et al (2001) Zooming - in on the proteome: very narrow - range immobilized pH gradients reveal more protein species and isoforms. Electrophoresis 22:2865–2871

    Article  CAS  PubMed  Google Scholar 

  • Whiteaker JR, Zhang H, Eng JK et al (2007) Head-to-head comparison of serum fractionation techniques. J Proteome Res 6:828–836

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Wang S, Peng X (2004) Serum acute phase response (APR)-related proteome of loach to trauma. Fish Shellfish Immunol 16:381–389

    Article  CAS  PubMed  Google Scholar 

  • You Q, Verschoor CP, Pant SD et al (2012) Proteomic analysis of plasma from Holstein cows testing positive for mycobacterium avium subsp. Paratuberculosis (MAP). Vet Immunol Immunopathol 148:243–251

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Taylor D, Begg DJ et al (2011) Biomarker discovery for ovine paratuberculosis (Johne’s disease) by proteomic serum profiling. Comp Immunol Microbiol Infect Dis 34:315–326

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soler, L., Miller, I. (2018). Proteomic Research in Farm Animal Serum and Plasma. In: de Almeida, A., Eckersall, D., Miller, I. (eds) Proteomics in Domestic Animals: from Farm to Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-69682-9_6

Download citation

Publish with us

Policies and ethics