Skip to main content

Power Harvesting and Data Exchange Links

  • Chapter
  • First Online:
Implantable Sensors and Systems

Abstract

For data exchange of implantable devices, wireless links are unavoidable except for the case when an indwelling catheter or probe is allowed to establish either a direct or close contact with the implantable sensor. Light transmission via optical fibers can offer a solution to accomplish data exchange. However, without a conductive path to the outside world, the environment found inside the human body for the propagation of electromagnetic radiation poses new challenges. The problem of data exchange in implantable sensors only encounters a contender of the same level when sensor powering comes to play, at least for active sensing systems. It is therefore possible to retrieve data from passive sensors with no need for DC powering, as will be discussed later in this chapter. Nevertheless, the vast majority of implantable sensors are still actively powered and the subject of power consumption cannot be overlooked. Low power consumption is of paramount importance in implantables to ensure long-term function of the sensor and patient safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Alternate current

ADC:

Analog-to-digital converter

AM:

Amplitude modulation

ASIC:

Application specific integrated circuit

ASK:

Amplitude shift keying

BPSK:

Binary phase shift keying

BSN:

Body sensor network

BVD:

Butterworth–Van Dyke Model

CMOS:

Complementary metal-oxide-semiconductor

CW:

Continuous wave

DAC:

Digital-to-analog converter

DBB:

Digital baseband

DC:

Direct current

DPSK:

Differential phase shift keying

DRAM:

Dynamic random access memory

DSSH:

Double synchronized switch harvesting

ECG:

Electrocardiogram

EM:

Electromagnetic

FBAR:

Film bulk acoustic resonator

FCC:

Federal Communications Commission

FDA:

Food and Drug Administration

FM:

Frequency modulation

FSK:

Frequency shift keying

IC:

Integrated circuit

IDT:

Interdigital transducer

IoT:

Internet of things

ISM:

Industrial, scientific and medical band

KLM:

Krimholtz–Leedom–Matthaei model

LC:

Inductor–capacitor circuit

LDO:

Low drop output

LED:

Light-emitting diode

LPF:

Low-pass filter

LSK:

Load shift modulation

MEMS:

Microelectromechanical system

MES:

Miller encoding scheme

MFC:

Micro-fibre composites

MICS:

Medical implant communication service band

MOSFET:

Metal oxide semiconductor field effect transistor

MPE:

Maximum permissible exposure

MRI:

Magnetic resonance imaging

OOK:

On-off keying

PA:

Power amplifier

PDMS:

Polydimethylsiloxane

PCL:

Polyprolactone

PLL:

Phase-locked loop

PLLA:

Polyactide

PM:

Phase modulation

PMOS:

p-channel MOSFET

PMU:

Power management unit

POR:

Power-on-reset

PPy:

Polypyrrole

PSK:

Phase shift keying

PTE:

Power transfer efficiency

PUT:

Programmable unijunction transistor

PV:

Photovoltaic array

PVDF:

Polyvinylidene difluoride

PWM:

Pulse-width modulation

RC:

Resistor–capacitor circuit

RF:

Radiofrequency

RFID:

Radiofrequency identifier

RLC:

Resistor–inductor–capacitor circuit

RX:

Receiver

SAR:

Specific absorption rate

SAW:

Surface acoustic wave resonator

SCR:

Silicon controlled rectifier

SDRAM:

Synchronous dynamic random access memory

SECE:

Synchronous electric charge extractor

SSHI:

Synchronized switch harvesting on inductor

TEG:

Thermoelectric generator

TX:

Transmitter

USB:

Universal serial bus

UTET:

Ultrasonic transcutaneous energy transfer

UWB:

Ultra-wide band

VCO:

Voltage-controlled oscillator

WMTS:

Wireless medical telemetry service band

WPC:

Wireless power consortium

References

  1. K. Bazaka, M.V. Jacob, Implantable devices: issues and challenges. Electronics 2, 1–34 (2013)

    Article  Google Scholar 

  2. A. Dewan et al., Alternative power sources for remote sensors: A review. J. Power Sources 245, 129–143 (2014)

    Article  Google Scholar 

  3. D. Pech et al., Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5, 651–654 (2010)

    Article  Google Scholar 

  4. S. Xu et al., Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013)

    Article  Google Scholar 

  5. J. Olivo et al., Biofuel cells and inductive powering as energy harvesting techniques for implantable sensors. Sci. Adv. Mater. 3, 420–425 (2011)

    Article  Google Scholar 

  6. S. Kerzenmacher et al., Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources 182, 1–17 (2008)

    Article  Google Scholar 

  7. P. Cinquin et al., A glucose biofuel cell implanted in rats. PLoS ONE 5(5), e10476 (2010)

    Article  Google Scholar 

  8. E. Katz, K. MacVittie, Implanted biofuel cells operating in vivo—methods, applications and perspectives—feature article. Energy Environm. Sci. 6, 2791–2803 (2013)

    Article  Google Scholar 

  9. P.P. Mercier et al., Energy extraction from the biologic battery in the inner ear. Nat. Biotechnol. 30(12), 1240–1243 (2012)

    Article  Google Scholar 

  10. M. Khan et al., A novel SPICE implementation of MPPT technique for implantable solar powered cardiac biosensors, in 9th International Conference on Industrial and Information Systems (ICIIS) (2014)

    Google Scholar 

  11. S. Ayazian et al., A photovoltaic-driven and energy-autonomous CMOS implantable sensor. IEEE Trans. Biomed. Circuits Syst. 6(4), 336–343 (2012)

    Article  Google Scholar 

  12. K. Sankaragomathi et al., A 27 μW subcutaneous wireless biosensing platform with optical power and data transfer, in IEEE Proceedings of the Custom Integrated Circuits Conference, pp. 1–4 (2014)

    Google Scholar 

  13. Y. Yang et al., Suitability of a thermoelectric power generator for implantable electronic devices. J. Phys. D Appl. Phys. 40, 5790–5800 (2007)

    Article  Google Scholar 

  14. C. Wu et al., A pliable and batteryless real-time ecg monitoring system-in-a-patch, in IEEE Transactions on Very Large Integration Systems, 2015

    Google Scholar 

  15. M. Ashraf and N. Masoumi, A thermal energy harvesting power supply with an internal startup circuit for pacemakers, IEEE Transactions on Very Large Integration Systems (2015)

    Google Scholar 

  16. S.E. Jo et al., Flexible thermoelectric generator for human body heat energy harvesting. Electron. Lett. 48(16), 1013–1015 (2012)

    Article  Google Scholar 

  17. C. Watkins et al., Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors, in International Conference on Thermoelectrics (2005)

    Google Scholar 

  18. D. Rozgic, D. Markovic, A 0.78 mW/cm2 autonomous thermoelectric energy-harvester for biomedical sensors, in Symposium on VLSI Circuits Digest of Technical Papers (2015)

    Google Scholar 

  19. H. Zhang et al., A flexible and implantable piezoelectric generator harvesting energy from the pulsation of the ascending aorta: in vitro and in vivo studies. Nano Energy 12, 296–304 (2015)

    Article  Google Scholar 

  20. N. Fadhil et al., Energy harvesting using nano scale dual layers PVDF film for blood artery, in IEEE Long Island Systems, Applications and Technology Conference, pp. 1–6 (2013)

    Google Scholar 

  21. M.A. Karami, D.J. Inman, Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl. Phys. Lett. 100, 042901 (2012)

    Article  Google Scholar 

  22. M. Deterre et al., Micro blood pressure energy harvester for intracardiac pacemaker. J. Microelectromech. Syst. 23(3), 651–660 (2014)

    Article  Google Scholar 

  23. Z. Lin Wang, Self-powered nanotech, in Scientific American, pp. 82–87 (2008)

    Google Scholar 

  24. R. Jagadeesan, Y. Guo, Topology selection and efficiency improvement of inductive power links. IEEE Trans. Antennas Propag. 60(10), 4846–4854 (2012)

    Article  Google Scholar 

  25. W. Zhang et al., Analysis and comparison of secondary series- and parallel-compensated inductive power transfer system operating for optimal efficiency and load-independent voltage-transfer ratio. IEEE Trans. Power Electron. 29(6), 2979–2990 (2014)

    Article  Google Scholar 

  26. T. Le et al., Piezoelectric micro-power generation interface circuits, IEEE J. Solid State Circuits, 41(6), 1411–1420 (2006)

    Google Scholar 

  27. S. Mandal, R. Sarpeshkar, Low-power CMOS rectifier design for RFID applications. IEEE TCAS-I Regul. Pap. 54(6), 1177–1188 (2007)

    Google Scholar 

  28. P. Si et al., A frequency control method for regulating wireless power to implantable devices. IEEE TBCAS 2(1), 22–29 (2008)

    Google Scholar 

  29. M. Kiani et al., A Q-modulation technique for efficient inductive power transmission, IEEE J. Solid State Circuits (2015) (accepted and available online)

    Google Scholar 

  30. M.W. Baker, R. Sarpeshkar, Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans. Biomed. Circuits Syst. 1(1), 28–38 (2007)

    Article  Google Scholar 

  31. M. Kiani et al., Design and optimization of a 3-coil inductive link for efficiency wireless power transmission. IEEE Trans. Biomed. Circuits Syst. 5(6), 579–591 (2011)

    Article  Google Scholar 

  32. A. Sample et al., Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58(2), 544–554 (2011)

    Article  MathSciNet  Google Scholar 

  33. M.L. Kung, K.H. Lin, Enhanced analysis and design method of dual-band coil module for near-field wireless power transfer systems. IEEE Trans. Microw. Theory and Tech. 63(3), 821–832 (2015)

    Article  Google Scholar 

  34. Z. Tang et al., Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans. Biomed. Eng. 42(5), 524–528 (1995)

    Article  Google Scholar 

  35. S. Mandal, R. Sarpeshkar, Power-efficient impedance-modulation wireless data links for biomedical implants. IEEE Trans. Biomed. Circuits Syst. 2(4), 301–315 (2008)

    Article  Google Scholar 

  36. F. Inanlou, M. Ghovanloo, Wideband near-field data transmission using pulse harmonic modulation, IEEE Trans. Circuits Syst. I Regul. Pap. 58(1), 186–195 (2011)

    Article  MathSciNet  Google Scholar 

  37. M. Kiani, M. Ghovanloo, A 13.56 Mbps pulse delay modulation based transceiver for simultaneous near-field data and power transmission. IEEE Trans. Biomed. Circuits Syst. 9(1), 1–11 (2015)

    Article  Google Scholar 

  38. K. Fotopoulou, B. Flynn, Wireless power transfer in loosely coupled links: Coil misalignment model. IEEE Trans. Magnet. 47(2), 416–430 (2011)

    Article  Google Scholar 

  39. J.S. Ho, A.S. Poon, Midfield wireless powering for implantable systems. Proc. IEEE 101(6), 1369–1378 (2013)

    Article  Google Scholar 

  40. S. Leung, D. Lam, Performance of printed polymer-based RFID antenna on curvilinear surface. IEEE Transactions on Electronics Packaging Manufacturing 30(3), 200–205 (2007)

    Article  Google Scholar 

  41. G. Fotheringham et al., Parameterization of bent coils on curbed flexible surface substrates for RFID applications, in 59th Conference on Electronic Components and Technology (2009)

    Google Scholar 

  42. U.M. Jow, M. Ghovanloo, Modeling and optimization of printed spiral coils in air, saline, and muscle tissue environments. IEEE Trans. Biomed. Circuits Syst. 3(5), 339–347 (2009)

    Article  Google Scholar 

  43. ICNIRP: Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz), Health Phys. 74, 494–522 (1998)

    Google Scholar 

  44. A. Christ et al., Evaluation of wireless resonant power transfer system with human electromagnetic exposure limits. IEEE Trans. Electromagn. Compat. 55(2), 265–274 (2013)

    Google Scholar 

  45. T. Sunohara et al., Induced field and SAR in human body model due to wireless power transfer system with induction coupling, in IEEE International Symposium on Electromagnetic Compatibility, Tokyo (2014)

    Google Scholar 

  46. A. Al-Kalbani et al., Electromagnetic interference in brain implants using multiple coils: biosafety and data communication performance. IEEE Trans. Electromagn. Compat. 56(2), 490–493 (2014)

    Article  Google Scholar 

  47. C. Sauer et al., Power harvesting and telemetry in CMOS for implanted devices, IEEE Trans. Circuits Syst I Regul Pap. 52(12), 2605–2613 (2005)

    Article  Google Scholar 

  48. B. Lenaerts, R. Puers, An inductive power link for a wireless endoscope. Biosens. Bioelectron. 22, 1390–1395 (2007)

    Article  Google Scholar 

  49. K. M. Silay et al., Load optimization of an inductive power link for remote powering of biomedical implants, in IEEE International Symposium on Circuits and Systems, pp. 533–536 (2009)

    Google Scholar 

  50. Y. Hu, M. Sawan, A fully integrated low-power BPSK demodulator for implantable medical devices, IEEE Trans. Circuits Syst. I Regul. Pap. 52(12), 2552–2562 (2005)

    Article  Google Scholar 

  51. M. Piedade et al., Visual neuroprosthesis: a non invasive system for stimulating the cortex, IEEE Trans. Circuits Syst. I Regul. Pap. 52(12), 2648–2662 (2005)

    Article  Google Scholar 

  52. R.A. Bercich et al., Far-field RF powering of implantable devices: safety considerations. IEEE Trans. Biomed. Eng. 60(8), 2107–2112 (2013)

    Article  Google Scholar 

  53. A. Ba et al., A 0.33 nJ/bit IEEE802.15.6/proprietary MICS/ISM wireless transceiver with scalable data rate for medical implantable applications. IEEE J. Biomed. Health Inf. 19(3), 920–929 (2015)

    Article  Google Scholar 

  54. R.E. Diaz, T. Sebastian, Electromagnetic limits to radiofrequency (RF) neuronal telemetry. Nat. Sci. Rep. 3, 3535 (2013)

    Article  Google Scholar 

  55. E.Y. Chow et al., Implantable RF medical devices. IEEE Microwave Mag. 14(4), 64–73 (2013)

    Article  MathSciNet  Google Scholar 

  56. C.A. Balanis, Antenna Theory: Analysis and Design, 3rd edn. (Wiley, New Jersey, 2005)

    Google Scholar 

  57. I. Singh, V.S. Tripathi, Micro strip patch antenna and its applications: a survey. Int. J. Comput. Appl. Technol. 2(5), 1595–1599 (2011)

    Google Scholar 

  58. A. Kumar et al., Performance analysis of different feeding techniques. Int. J. Emerg. Technol. Adv. Eng. 3(3), 884–890 (2013)

    Google Scholar 

  59. P. Anacleto et al., Micro antennas for implantable medical devices, in IEEE 3rd Portuguese Meeting in Bioengineering, pp. 1–4 (2013)

    Google Scholar 

  60. C.L. Yang et al., Low-invasive implantable devices of low-power consumption using high-efficiency antennas for cloud health care. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2(1), 14–23 (2012)

    Article  Google Scholar 

  61. L.Y. Chen et al., Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2013)

    Article  Google Scholar 

  62. M. Shakib et al., Design of a tri-band implantable antenna for wireless telemetry applications, in IEEE International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications, pp. 1–3 (2014)

    Google Scholar 

  63. D.D. Karnaushenko et al., Compact helical antenna for smart implant applications. Nat. Publ. Group Asia Mater. 7, e188 (2015)

    Google Scholar 

  64. S.Y. Wu et al., 3D-printed microelectronics for integrated circuitry and passive wireless sensors. Nat. Microsyst. Nanoeng. 1, 15013 (2015)

    Article  Google Scholar 

  65. N. Shariati et al., Multi-service highly sensitive rectifier for enhanced RF energy scavenging. Nat. Sci. Rep. 5, 9655 (2015)

    Article  Google Scholar 

  66. J. Walk et al., Improvements of wireless communication and energy harvesting aspects for implantable sensor interfaces by using the split frequencies concept, in IEEE Radio and Wireless Symposium, pp. 406–409 (2011)

    Google Scholar 

  67. D.W. Gulik, B.C. Towe, Characterization of simple wireless neurostimulators and sensors, in IEEE 36th Annual International Conference of the Engineering in Medicine and Biology Society, pp. 3130–3133 (2014)

    Google Scholar 

  68. R. Ahmed et al., An RFID front end for smart biological sensing, in IEEE 55th International Midwest Symposium on Circuits and Systems, pp. 778–781 (2012)

    Google Scholar 

  69. E.Y. Chow et al., Wireless powering and the study of RF propagation through ocular tissue for development of implantable sensors. IEEE Trans. Antennas Propag. 59(6), 2379–2387 (2011)

    Article  Google Scholar 

  70. K. Okabe et al., A thin film flexible antenna with CMOS rectifier chip for RF-powered implantable neural interfaces, in IEEE 18th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 1751–1754 (2015)

    Google Scholar 

  71. E.Y. Chow et al., Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans. Biomed. Eng. 57(6), 1487–1496 (2010)

    Article  Google Scholar 

  72. P. Cong et al., A wireless and batteryless 10-bit implantable blood pressure sensing microsystem with adaptive RF powering for real-time laboratory mice monitoring. IEEE J. Solid State Circuits 44(12), 3631–3644 (2009)

    Article  Google Scholar 

  73. D. Venuto, J. Rabaey, RFID transceiver for wireless powering brain implanted microelectrodes and backscattered neural data collection. Microelectron. J. 45, 1585–1594 (2014)

    Article  Google Scholar 

  74. M. Arsalan et al., A 5.2 GHz, 0.5 mW RF powered wireless sensor with dual on-chip antennas for implantable intraocular pressure monitoring, in IEEE MTT-S International Microwave Symposium Digest (2013)

    Google Scholar 

  75. J. Mao et al., A subgigahertz UWB transmitter with wireless clock harvesting for RF-powered applications, IEEE Trans. Circuits Sys. II Express Briefs 61(5), 314–318 (2014)

    Article  Google Scholar 

  76. C. M. Boutry et al., RF conductivity of biodegradable conductive polymers used for a new generation of partially/fully resorbable wireless implantable sensors, in IEEE 25th International Conference on Micro Electro Mechanical Systems, pp. 468–471 (2012)

    Google Scholar 

  77. S.G. Kim et al., A highly sensitive and label free biosensing platform for wireless sensor node system. Biosens. Bioelectron. 50, 362–367 (2013)

    Article  Google Scholar 

  78. N.Y. Kim et al., A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level. Biosens. Bioelectron. 67, 687–693 (2015)

    Article  Google Scholar 

  79. R. Melik et al., Metamaterial-based wireless RF-MEMS strain sensors, in IEEE Sensors, pp. 2173–2176 (2010)

    Google Scholar 

  80. J.H. Lee et al., High temperature, high power piezoelectric composite transducers. Sensors 14, 14526–14552 (2014)

    Article  Google Scholar 

  81. R. Calio et al., Piezoelectric energy harvesting solutions. Sensors 14, 4755–4790 (2014)

    Article  Google Scholar 

  82. T.L. Szabo, Diagnostic Ultrasound Imaging: Inside Out (Elsevier Inc, London, 2004)

    Google Scholar 

  83. Z. Suo, Theory of dielectric elastomers. Acta Mechanica Solida 23(6), 549–578 (2010)

    Article  Google Scholar 

  84. S. Ozeri, D. Shmilovitz, Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation. Ultrasonics 54, 1929–1937 (2014)

    Article  Google Scholar 

  85. A. Denisov, E. Yeatman, Ultrasonic vs. inductive power delivery for miniature biomedical implants, in IEEE International Conference on Body Sensor Networks, pp. 84–89 (2010)

    Google Scholar 

  86. Y. Zhu et al., Ultrasonic energy transmission and conversion using a 2-D MEMS resonator. IEEE Electron Dev. Lett. 31(4), 374–376 (2010)

    Article  Google Scholar 

  87. A. Fowler et al., An omnidirectional MEMS ultrasonic energy harvester for implanted devices. J. Microelectromech. Sys. 23(6), 1454–1462 (2014)

    Article  Google Scholar 

  88. Q. He et al., MEMS-based ultrasonic transducer as the receiver for wireless power supply of the implantable microdevices. Sens. Actuators A 219, 65–72 (2014)

    Article  Google Scholar 

  89. S. Ozeri et al., Ultrasonic transcutaneous energy transfer using a continuous wave 650 kHz Gaussian shagged transmitter. Ultrasonics 50, 666–674 (2010)

    Article  Google Scholar 

  90. S. Ozeri, D. Shmilovitz, Ultrasonic transcutaneous energy transfer for powering implanted devices. Ultrasonics 50, 556–566 (2010)

    Article  Google Scholar 

  91. M. Xu, L.V. Wang, Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006)

    Article  Google Scholar 

  92. K.W. Dongen, W.M. Wright, A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging. J. Acoust. Soc. Am. 120(4), 2086–2095 (2006)

    Article  Google Scholar 

  93. F. Mazzilli et al., Ultrasound energy harvesting system for deep implanted-medical-devices (IMDs), in IEEE International Symposium on Circuits and Systems, pp. 2865–2868 (2012)

    Google Scholar 

  94. Y. Liu et al., Active piezoelectric energy harvesting: general principle and experimental demonstration. J. Int. Mater. Sys. Struct. 20, 575–585 (2009)

    Article  Google Scholar 

  95. J. Qiu et al., Comparison between four piezoelectric energy harvesting circuits. Front. Mech. Eng. China 4(2), 153–159 (2009)

    Article  Google Scholar 

  96. D. Guyomar et al., Energy harvesting from ambient vibrations and heat. J. Intell. Mater. Sys. Struct. 20, 609–623 (2009)

    Article  Google Scholar 

  97. J. Park et al., The effect of switch triggering offset and switch on-time duration on harvested power in synchronized switch harvesting on inductor. Int. J. Smart Home 7(3), 207–218 (2013)

    Google Scholar 

  98. A. Nechibvute et al., Piezoelectric energy harvesting using synchronized switching techniques. Int. J. Eng. Technol. 2(6), 936–946 (2012)

    Google Scholar 

  99. M.L. Navaii et al., An ultra-low power RF interface for wireless-implantable microsystems. Microelectron. J. 43, 848–856 (2012)

    Article  Google Scholar 

  100. Y. Ammar, S. Basrour, Non-linear techniques for increasing harvesting energy from piezoelectric and electromagnetic micro-power-generators, in Dans Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Stresa, Italy (2006)

    Google Scholar 

  101. A. Sanni et al., Inductive and ultrasonic multi-tier interface for low-power, deeply implantable medical device. IEEE Trans. Biomed. Circuits Sys. 6(4), 297–308 (2012)

    Article  Google Scholar 

  102. L. Cheng et al., Wireless, power-free and implantable nanosystem for resistance-based biodetection. Nano Energy 15, 598–606 (2015)

    Article  Google Scholar 

  103. W.S. Jung et al., High output piezo/triboelectric hybrid generator. Nat. Sci. Rep. 5, 9309 (2015)

    Article  Google Scholar 

  104. D. Seo et al., Neural Dust: An Ultrasonic, Low Power Solution for Chronic Brain-Machine Interfaces (Cornell University Library, Berkeley, 2013)

    Google Scholar 

  105. G. Wild, S. Hinckley, Acoustic transmissions for wireless communications and power supply in biomedical devices, in Proceedings of 20th International Congress on Acoustics (2010)

    Google Scholar 

  106. J. Charthad et al., A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link. IEEE J. Solid-State Circuits 50(8), 1741–1753 (2015)

    Article  Google Scholar 

  107. B.M. Rosa, G.Z. Yang, Active implantable sensor powered by ultrasounds with application in the monitoring of physiological parameters for soft tissue, in IEEE Conference on Body Sensor Networks (2016)

    Google Scholar 

  108. I. Voiculescu, A.N. Nordin, Acoustic wave based MEMS devices for biosensing applications. Biosens. Bioelectron. 33, 1–9 (2012)

    Article  Google Scholar 

  109. N. Gopalsami et al., SAW microsensor brain implant for prediction and monitoring of seizures. IEEE Sens. J. 7(7), 977–982 (2007)

    Article  Google Scholar 

  110. G. Martin et al., Measuring the inner body temperature using a wireless temperature saw-sensor-based system, in IEEE Conference: Ultrasonics Symposium, 4 (2005)

    Google Scholar 

  111. X. Ye et al., Studies of a high-sensitive surface acoustic wave sensor for passive wireless blood pressure measurement. Sens. Actuators A 169, 74–82 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gil, B., Ip, H., Yang, GZ. (2018). Power Harvesting and Data Exchange Links. In: Yang, GZ. (eds) Implantable Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-69748-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69748-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69747-5

  • Online ISBN: 978-3-319-69748-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics