Skip to main content

Improved Ant Colony RBF Spatial Interpolation of Ore Body Visualization Software Development

  • Conference paper
  • First Online:
Advances on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2017)

Abstract

With ore body space interpolation and the three dimensional simulation visualization, has been for the internal structure of the ore body is too complex and the effect not beautiful. Using nonlinear improved ant colony radial basis neural network method for ore grade for interpolation, in contrast to the traditional inverse distance square interpolation method to improve the precision of more. With Vc++ and OpenGL environment developed ore body visualization software, and ore body grade distribution visualization, facilitate further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Houlding, S.: 3D Geoscience Modeling: Computer Techniques for Geological Characterization. Springer, London (1994)

    Book  Google Scholar 

  2. Er, M.J., Wu, S., Lu, J., et al.: Face recognition with radial basis function (RBF) neural networks. IEEE Trans. Neural Networks 13(3), 697–710 (2002)

    Article  Google Scholar 

  3. Seshagiri, S., Khalil, H.K.: Output feedback control of nonlinear systems using RBF neural networks. IEEE Trans. Neural Networks 11(1), 69–79 (2000)

    Article  Google Scholar 

  4. Yingwei, L., Sundararajan, N., Saratchandran, P.: Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Trans. Neural Networks 9(2), 308–318 (1998)

    Article  Google Scholar 

  5. Wedding, D.K., Cios, K.J.: Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model. Neurocomputing 10(2), 149–168 (1996)

    Article  MATH  Google Scholar 

  6. Li, Y., Qiang, S., Zhuang, X., et al.: Robust and adaptive backstepping control for nonlinear systems using RBF neural networks. IEEE Trans. Neural Networks 15(3), 693–701 (2004)

    Article  Google Scholar 

  7. Yun, Z., Quan, Z., Caixin, S., et al.: RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment. IEEE Trans. Power Syst. 23(3), 853–858 (2008)

    Article  Google Scholar 

  8. Yang, F., Paindavoine, M.: Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification. IEEE Trans. Neural Networks 14(5), 1162–1175 (2003)

    Article  Google Scholar 

  9. Chung, K.M., Kao, W.C., Sun, C.L., et al.: Radius margin bounds for support vector machines with the RBF kernel. Neural Comput. 15(11), 2643–2681 (2003)

    Article  MATH  Google Scholar 

  10. Funahashi, K.J.: On the approximate realization of continuous mapping by neural networks. Neural Net-works 2, 183–192 (1989)

    Article  Google Scholar 

  11. Skaf, Z., Wang, H., Guo, L.: Fault tolerant control based on stochastic distribution via RBF neural networks. J. Syst. Eng. Electron. 1, 63–69 (2011)

    Article  Google Scholar 

  12. Thibault, J.: Feedforward neural networks for the identification of dynamic process. Chem. Eng. Commun. 105, 109–128 (1991)

    Article  Google Scholar 

  13. Wang, H., Afshar, P., Yue, H.: ILC-based generalised PI control for output PDF of stochastic systems using LMI and RBF neural networks. In: Proceedings of the IEEE Conference on Decision and Control, pp. 5048–5053 (2006)

    Google Scholar 

  14. Gutjahr, W.J.: A graph-based ant system and its convergence. Future Gener. Comput. Syst. 16(8), 873–888 (2000)

    Article  Google Scholar 

  15. Derigo, M., Di Caro, G.: Ant algorithms for discrete optimization. Artif. Life 5(3), 137–172 (1999)

    Article  Google Scholar 

  16. Stutzle, T., Hoos, H.H.: MAX-MIN ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This work is supported by Guangxi Key Laboratory of Cryptography and Information Security, Grant/Award Number: GCIS201610

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiurong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Wang, X., Wu, X. (2018). Improved Ant Colony RBF Spatial Interpolation of Ore Body Visualization Software Development. In: Xhafa, F., Caballé, S., Barolli, L. (eds) Advances on P2P, Parallel, Grid, Cloud and Internet Computing. 3PGCIC 2017. Lecture Notes on Data Engineering and Communications Technologies, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-69835-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69835-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69834-2

  • Online ISBN: 978-3-319-69835-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics