Skip to main content

Miscibility Gap Alloys: A New Thermal Energy Storage Solution

  • Chapter
  • First Online:
Transition Towards 100% Renewable Energy

Abstract

The status of miscibility gap alloys (MGA), which have demonstrated excellent characteristics for thermal storage applications over a wide range of temperatures, is reviewed. MGA remain macroscopically solid whilst delivering latent heat from embedded metal particles supplemented by the sensible heat of the whole material. Heat can be delivered rapidly due to very high thermal conductivity leading to modular solid storage designs which can act as solar boilers for direct steam CSP or other applications. Progress in the manufacture, alloy design and a demonstration of 1.5 kW steam turbine generator with integrated MGA storage unit are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Copus, M., Reed, S., Kisi, E. H., Sugo, H. O., & Bradley, J. (2017). Scaling up miscibility gap alloy thermal storage materials. In Transition Towards 100% Renewable Energy: Selected papers from the World Renewable Energy Congress (WREC XVI) , 2017, ISBN: 978-3-319-69843-4.

    Google Scholar 

  • Kenisarin, M. M. (2010). High-temperature phase change materials for thermal energy storage. Renewable and Sustainable Energy Reviews, 14, 955–970.

    Article  Google Scholar 

  • Khan, Z., Khan, Z., & Ghafoor, A. (2016). A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Conversion and Management, 115, 132–158.

    Article  Google Scholar 

  • Khare, S., Dell’Amico, M., Knight, C., & McGarry, S. (2012). Selection of materials for high temperature latent heat energy storage. Solar Energy Materials & Solar Cells, 107, 20–27.

    Article  Google Scholar 

  • Kuravi, S., Trahan, J., Goswami, D. Y., Rahman, M., & Stefanakos, E. K. (2013). Thermal energy storage technologies and systems for concentrating solar power. Progress in Energy and Combustion Science, 39, 285–319.

    Article  Google Scholar 

  • Laing, D., Bahl, C., Bauer, T., Fiss, M., Breidenbach, N., & Hempel, M. (2012). High-temperature solid media thermal energy storage for solar thermal plants. Proceedings of the IEEE, 100(2), 516–524.

    Article  Google Scholar 

  • Post, A., Rawson, A. J., Sugo, H. O., Cuskelly, D. T., Bradley, J., & Kisi, E. H. (2017). Price estimation for miscibility gap alloy thermal storage systems. Renewable Energy and Environmental Sustainability 2, 32.

    Google Scholar 

  • Rathod, M. K., & Bannerjee, J. (2013). Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renewable and Sustainable Energy Reviews, 18, 246–258.

    Article  Google Scholar 

  • Rawson, A. J., Sugo, H. O., & Kisi, E. H. (2014). Characterising thermal properties of miscibility gap alloys for thermal storage applications. In Proceedings 52nd conference of the Australian Solar Council, Melbourne.

    Google Scholar 

  • Rawson, A. J. (2016). Modelling and application of advanced thermal storage materials. PhD thesis, University of Newcastle, Newcastle.

    Google Scholar 

  • Reed, S., Sugo, H., & Kisi, E. H. (2017). New highly thermally conductive thermal storage media. In Transition Towards 100% Renewable Energy: Selected papers from the World Renewable Energy Congress (WREC XVI), 2017, ISBN: 978-3-319-69843-4. 

    Google Scholar 

  • Relebohele, J. R., & Dinter, F. (2015). Evaluation of parasitic consumption for a CSP plant. In Proceedings solar PACES 2015, AIP conf. proceedings 1734, document 070027 (pp. 1–8).

    Google Scholar 

  • Rintoul, M. D., & Torquato, S. (1997). Precise determination of the critical threshold and exponents in a three – Dimensional continuum percolation model. Journal of Physics A: Mathematical and General, 30, L585–L592.

    Article  MATH  Google Scholar 

  • Song, C., Wang, P., & Makse, H. A. (2008). A phase diagram for jammed matter. Nature, 453, 629–632.

    Article  Google Scholar 

  • Sugo, H. O., Kisi, E. H., & Cuskelly, D. T. (2013). Miscibility gap alloys with inverse microstructures and high thermal conductivity for high energy density thermal storage applications. Applied Thermal Engineering, 51, 1345–1351.

    Article  Google Scholar 

  • Sugo, H. O., Kisi, E. H., Bradley, J., Fiedler, T., & Luzin, V. (2017). In situ Neutron diffraction studies of operating MGA thermal storage materials. Renewable Energy Environmental Sustainability 2, 34.

    Google Scholar 

  • Xu, B., Li, P. W., & Chan, C. (2015). Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Applied Energy, 160, 286–307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Kisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kisi, E. et al. (2018). Miscibility Gap Alloys: A New Thermal Energy Storage Solution. In: Sayigh, A. (eds) Transition Towards 100% Renewable Energy. Innovative Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-69844-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69844-1_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69843-4

  • Online ISBN: 978-3-319-69844-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics