Skip to main content

Biaxial Tensile Tests and Microstructure-Based Inverse Parameter Identification of Inhomogeneous SMC Composites

  • Chapter
  • First Online:
Advances in Mechanics of Materials and Structural Analysis

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 80))

Abstract

Discontinuous fiber reinforced composites offer great advantages for high-volume lightweight components. The characterization of their process-dependent, macro-heterogeneous, anisotropic mechanical behavior presents, however, a challenge to composite material science. Biaxial tensile tests allow for the loading of various stress states on the specimen. The inhomogeneous stress and strain fields require an inverse parameter identification. Previous biaxial tensile tests in the elastic range showed fluctuations in the elastic properties within one specimen. Micro CT scans suggested that some of these fluctuations derive from an inhomogeneous fiber orientation distribution. The identification of a generally inhomogeneous stiffness leads, however, to an ill-posed problem which does not allow for a unique solution. We introduce the assumption of linearity between the stiffness tensor and the fiber orientation distribution. This simplification reduces the problem size to five degrees of freedom per specimen which do not depend on fiber orientation distribution. Four of these parameters are identifiable and are determined in a Gauss-Newton type optimization procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Advani, S.G., Tucker III, C.L.: The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31(8), 751–784 (1987). https://doi.org/10.1122/1.549945

    Article  Google Scholar 

  2. Böhlke, T., Jöchen, K., Piat, R., Langhoff, T.A., Tsukrov, I.: Elastic properties of pyrolytic carbon with axisymmetric textures. Tech. Mech. 30(4), 343–353 (2010)

    Google Scholar 

  3. Buck, F., Brylka, B., Müller, V., Müller, T., Weidenmann, K.A., Hrymak, A.N., Henning, F., Böhlke, T.: Two-scale structural mechanical modeling of long fiber reinforced thermoplastics. Compos. Sci. Technol. 117, 159–167 (2015). https://doi.org/10.1016/j.compscitech.2015.05.020

    Article  Google Scholar 

  4. Chamekh, A., Bel Hadj Salah, H., Hambli, R.: Inverse technique identification of material parameters using finite element and neural network computation. Int. J. Adv. Manuf. Technol. 44(1–2), 173–179 (2009). https://doi.org/10.1007/s00170-008-1809-6

    Article  Google Scholar 

  5. Cooreman, S., Lecompte, D., Sol, H., Vantomme, J., Debruyne, D.: Identification of mechanical material behavior through inverse modeling and DIC. Exp. Mech. 48(4), 421–433 (2007). https://doi.org/10.1007/s11340-007-9094-0

    Article  MATH  Google Scholar 

  6. Ehrentraut, H., Muschik, W.: On symmetric irreducible tensors in d dimensions introduction and motivation. Int. J. Phys. Eng. Sci. 149–159 (1998). https://doi.org/10.1007/s007770050048

  7. Forte, S., Vianello, M.: Symmetry classes for elasticity tensors. J. Elast. 43(2), 81–108 (1996). https://doi.org/10.1007/BF00042505

    Article  MathSciNet  MATH  Google Scholar 

  8. Hartmann, S., Gilbert, R.R.: Identifiability of material parameters in solid mechanics. Arch. Appl. Mech. 1–24 (2017). https://doi.org/10.1007/s00419-017-1259-4

  9. Kanatani, K.I.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22(2), 149–164 (1984). https://doi.org/10.1016/0020-7225(84)90090-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Katayama, T., Shinohara, M., Hakotani, M., Kitade, A., Kono, D.: Development of CAE for predicting stiffness of SMC structure estimation of young’s modulus in rib part. J. Mater. Process. Technol. 119(13), 237–243 (2001). https://doi.org/10.1016/S0924-0136(01)00958-X

  11. Lecompte, D., Smits, A., Sol, H., Vantomme, J., Van Hemelrijck, D.: Mixed numerical-experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens. Int. J. Solids Struct. 44(5), 1643–1656 (2007). https://doi.org/10.1016/j.ijsolstr.2006.06.050

    Article  Google Scholar 

  12. Mahnken, R., Stein, E.: A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput. Methods Appl. Mech. Eng. 136(3–4), 225–258 (1996a). https://doi.org/10.1016/0045-7825(96)00991-7

  13. Mahnken, R., Stein, E.: Parameter identification for viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations. Int. J. Plast. 12(4), 451–479 (1996b)

    Article  MATH  Google Scholar 

  14. Mori, T., Tanaka, K.: Averate stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  15. Müller, V., Böhlke, T.: Prediction of effective elastic properties of fiber reinforced composites using fiber orientation tensors. Compos. Sci. Technol. 130, 36–45 (2016). https://doi.org/10.1016/j.compscitech.2016.04.009

    Article  Google Scholar 

  16. Müller, V., Kabel, M., Andrä, H., Böhlke, T.: Homogenization of linear elastic properties of short-fiber reinforced composites a comparison of mean field and voxel-based methods. Int. J. Solids Struct. 67, 56–70 (2015). https://doi.org/10.1016/j.ijsolstr.2015.02.030

    Article  Google Scholar 

  17. Osswald, T.A., Tucker, C.L.: Compression mold filling simulation of non-planar parts. Int. Polym. Process. 5(2), 79–87 (1989). https://doi.org/10.3139/217.900079

    Article  Google Scholar 

  18. Pan, W., Boyle J., Ramlan, M., Dun, C., Ismail, M., Hakoda, K.: Material plastic properties characterization using a generic algorithm and finite element method modelling of the plane-strain small punch test. STP Conference, Ostrava, Czech Republic (2010)

    Google Scholar 

  19. Ponthot, J.P., Kleinermann, J.P.: A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation. Comput. Methods Appl. Mech. Eng. 195(41–43), 5472–5508 (2006). https://doi.org/10.1016/j.cma.2005.11.012

    Article  MATH  Google Scholar 

  20. Rychlewski, J.: A qualitative approach to Hooke’s tensors. Part I. Arch. Mech. 52(4–5), 737–759 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Schemmann, M., Brylka, B., Gajek, S., Böhlke, T.: Parameter identification by inverse modelling of biaxial tensile tests for discontinous fiber reinforced polymers. Proc. Appl. Math. Mech. 15(1), 355–356 (2015a). https://doi.org/10.1002/pamm.201510168

  22. Schemmann, M., Brylka, B., Müller, V., Kehrer, M.L., Böhlke, T.: Mean field homogenization of discontinous fiber reinforced polymers and parameter identification of biaxial tensile tests through inverse modeling. In: Proceedings of 20th International Conference on Composite Materials, vol. 20 (2015b)

    Google Scholar 

  23. Schnur, D., Zabaras, N.: An inverse method for determining elastic material properties and a material interface. 33, 2039–2057 (1992)

    Google Scholar 

  24. Schouten, J.A.: Der Ricci-KalkĂĽl, Grundlehren der mathematischen Wissenschaften, vol. 10. Springer, Berlin, Heidelberg (1924). https://doi.org/10.1007/978-3-662-06545-7

  25. Zheng, Q.S., Du, D.X.: An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J. Mech. Phys. Solids 49(11), 2765–2788 (2001). https://doi.org/10.1016/S0022-5096(01)00078-3

Download references

Acknowledgements

The micro CT scans of the SMC material were performed by Pascal Pinter from the Institute of Applied Materials (KIT). The plates were manufactured by David BĂĽcheler and Martin Hohberg at the Fraunhofer Institute of Chemical Technology in Pfinztal Germany. We would like to thank these partners for the great cooperation.

The research documented in this manuscript has been funded by the German Research Foundation (DFG) within the International Research Training Group Integrated engineering of continuous-discontinuous long fiber reinforced polymer structures (GRK 2078). The support by the German Research Foundation (DFG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte Schemmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schemmann, M., Gajek, S., Böhlke, T. (2018). Biaxial Tensile Tests and Microstructure-Based Inverse Parameter Identification of Inhomogeneous SMC Composites. In: Altenbach, H., Jablonski, F., Müller, W., Naumenko, K., Schneider, P. (eds) Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-70563-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70563-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70562-0

  • Online ISBN: 978-3-319-70563-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics