Skip to main content

Dynamic Collision Avoidance System for a Manipulator Based on RGB-D Data

  • Conference paper
  • First Online:
ROBOT 2017: Third Iberian Robotics Conference (ROBOT 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 694))

Included in the following conference series:

Abstract

The new paradigms of Industry 4.0 demand the collaboration between robot and humans. They could help and collaborate each other without any additional safety unlike other manipulators. The robot should have the ability of acquire the environment and plan (or re-plan) on-the-fly the movement avoiding the obstacles and people. This paper proposes a system that acquires the environment space, based on a kinect sensor, performs the path planning of a UR5 manipulator for pick and place tasks while avoiding the objects, based on the point cloud from kinect. Results allow to validate the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barraquand, J., Latombe, J.C.: Robot motion planning. a distributed representation approach. Int. J. Robot. Res. 10(6), 628–649 (1991)

    Article  Google Scholar 

  2. Ralli, E., Hirzinger, G.: Fast path planning for robot manipulators using numerical potential fields in the configuration space, vol. 3, pp. 1922–1929 (1994)

    Google Scholar 

  3. Kavraki, L., Svestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996), ISSN: 1042-296X

    Google Scholar 

  4. Siméon, T., Laumond, J.P., Nissoux, C.: Visibility based probabilistic roadmaps for motion planning. Adv. Robot. 14(6), 477–494 (2000)

    Article  Google Scholar 

  5. Wilmarth, S., Amato, N., Stiller, P.: Maprm: a probabilistic roadmap planner with sampling on the medial axis of the free space. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1024–1031 (1999)

    Google Scholar 

  6. Bohlin, R., Kavraki, L.E.: Path planning using lazy PRM. In: Proceedings of the IEEE International Conference on Robotics and Automation, San Fransisco, vol. 1, pp. 521–528 (2000)

    Google Scholar 

  7. Plaku, E., Bekris, K.E., Chen, B.Y., Ladd, A.M., Kavraki, L.E.: Sampling based roadmap of trees for parallel motion planning. IEEE Trans. Rob. 21(4), 597–608 (2005)

    Article  Google Scholar 

  8. Helguera, C., Zeghloul, S.: A local-based method for manipulators path planning in heavy cluttered environments. In: Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, pp. 3467–3472 (2000)

    Google Scholar 

  9. Blackmore, L., Williams, B.: Optimal manipulator path planning with obstacles using disjunctive programming. In: American Control Conference, Minneapolis (2006)

    Google Scholar 

  10. Lahouar, S., Zeghloul, S., Romdhane, L.: Real-time path planning for multi-DoF manipulators in dynamic environment. Int. J. Adv. Robot. Syst. 3(2) (2006)

    Google Scholar 

  11. Tavares, P., Lima, J., Costa, P., Moreira, A.P.: Multiple manipulators path planning using double A*. Ind. Robot: Int. J. 43(6), 657–664 (2016). https://doi.org/10.1108/IR-01-2016-0006

    Article  Google Scholar 

  12. Staranowicz, A., Brown, G.R., Morbidi, F., Mariottini, G.L.: Easy-to-use and accurate calibration of RGB-D cameras from spheres. In: Klette, R., Rivera, M., Satoh, S. (eds.) Image and Video Technology, PSIVT 2013. LNCS, vol. 8333. Springer, Heidelberg (2014)

    Google Scholar 

  13. Chitta, S.: MoveIt!: an introduction. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 625. Springer, Cham (2016)

    Google Scholar 

  14. Walid Darwish, W., Tang, S., Wenbin, L., Chen, W.: A new calibration method for commercial RGB-D sensors. Sensors 17, 1204 (2017). https://doi.org/10.3390/s17061204

    Article  Google Scholar 

  15. Basso, F., Pretto, A., Menegatti, E.: Unsupervised intrinsic and extrinsic calibration of a camera-depth sensor couple. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (2014)

    Google Scholar 

  16. Martinez, A., Fernández, E.: Learning ROS for Robotics Programming. Packt Publishing, Birmingham (2013)

    Google Scholar 

  17. Joseph, L.: Mastering ROS for Robotics Programming. Packt Publishing, Birmingham (2015)

    Google Scholar 

  18. The Robotic Operation System Wiki, http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics

  19. ROS Industrial Training Exercises with version Kinetic, https://github.com/ros-industrial/industrial_training/wiki

  20. Sensor supported by ROS, http://wiki.ros.org/Sensors

  21. Sucan, I.A., Chitta, S.: MoveIt, http://moveit.ros.org

  22. Sucan, I.A., Chitta, S.: MoveIt, http://picknik.io/moveit_wiki/index.php?title=High-level_Overview_Diagram

  23. Sucan, I.A., Moll, M., Kavraki, L.E.: The Open Motion Planning Library. IEEE Robot. Autom. Mag. (2012), http://ompl.kavrakilab.org

Download references

Acknowledgment

Project “TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020” is financed by the North Portugal Regional Operational. Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF).

This work is also financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-006961, and by National Funds through the FCT – Fundaçao para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thadeu Brito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brito, T., Lima, J., Costa, P., Piardi, L. (2018). Dynamic Collision Avoidance System for a Manipulator Based on RGB-D Data. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds) ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing, vol 694. Springer, Cham. https://doi.org/10.1007/978-3-319-70836-2_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70836-2_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70835-5

  • Online ISBN: 978-3-319-70836-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics