Skip to main content

Analyses of Exact Problems: First-Order Models

  • Chapter
  • First Online:
Mathematical Foundations of Computational Electromagnetism

Part of the book series: Applied Mathematical Sciences ((AMS,volume 198))

  • 1708 Accesses

Abstract

In this chapter, we devote our attention to establishing mathematical properties concerning the electromagnetic fields that are governed by the time-dependent Maxwell equations. For that, we investigate a number of physical properties of the electromagnetic fields exhibited in Chap. 1, using the mathematical tools introduced in Chaps. 2, 3 and 4. We focus mainly on four items.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Remark 5.1.2 on how to take into account the boundary condition on the magnetic field.

  2. 2.

    Since one can choose where to put the artificial boundary Γ A , it is a reasonable assumption. Also, because Γ A is smooth, one has

    $$\displaystyle \begin{aligned} \boldsymbol{H}^{1/2}_\parallel(\varGamma_A)=\boldsymbol{H}^{1/2}_\perp(\varGamma_A)=\boldsymbol{H}^{1/2}_t(\varGamma_A),\mbox{ where }\boldsymbol{H}^{1/2}_t(\varGamma_A):=\boldsymbol{L}^{2}_t(\varGamma_A)\cap\boldsymbol{H}^{1/2}(\varGamma_A), \end{aligned}$$

    and similarly for the dual spaces, \(\boldsymbol {H}^{-1/2}_\parallel (\varGamma _A)=\boldsymbol {H}^{-1/2}_\perp (\varGamma _A)=\boldsymbol {H}^{-1/2}_t(\varGamma _A)\).

  3. 3.

    If ∂Γ P  ∩ ∂Γ A  = ∅, one still needs to address the possible lack of regularity of the artificial boundary (see Remark 5.1.6). This corresponds to configurations 2 and 3 of Γ A in the study below.

  4. 4.

    One applies the Lax-Milgram Theorem 4.2.8 to the equivalent variational form:

    If Γ A is not a connected set, one chooses—instead of \(H^1_0(\varGamma _A)\)—the space

    $$\displaystyle \begin{aligned} \{ f\in H^1(\varGamma_A)\ :\ f_{\mid{\partial\varGamma_A^0}}=0,\ f_{\mid{\partial\varGamma_A^k}}=cst_k,\ 1\le k\le K_A\}, \end{aligned}$$

    where \((\varGamma _A^k)_{k=0,K_A}\) are the (maximal) connected components of Γ A .

  5. 5.

    For \( \underline \psi = \underline \psi ^++\sqrt {{\mu }/{\varepsilon }} \underline \psi ^-\), we have: \( \underline \psi \in H^{1/2}(\varGamma _A)\), \(\varDelta _\varGamma \underline \psi =0\) in Γ A , \(t_{\boldsymbol {\nu }}( \operatorname {\mathrm {\mathbf {grad}}}_\varGamma \underline \psi )=0\). In this case, we are looking for singular solutions (with at least H 1∕2-regularity) to the Laplace-Beltrami problem with homogeneous Neumann boundary condition and right-hand side. Completely similar analyses can be carried out for \( \underline \psi \): they yield the same results as for \( \underline \phi \).

  6. 6.

    More precisely, we recall that, if \( \underline \phi \) belongs to H 1(Γ A ) with \( \underline \phi { }_{\mid {\partial \varGamma _A}}=0\), we apply the integration by parts (5.23) to find that . If one replaces \( \underline \phi \) with \( \underline \phi '= \underline \phi +c\) with c≠0, then the technique still applies (even though \( \underline \phi '{ }_{\mid {\partial \varGamma _A}}\ne 0\)), because \(\varDelta _\varGamma \underline \phi '=0\). So, the local constant behavior can be neglected.

  7. 7.

    See footnote 5, p. 12.

  8. 8.

    One can easily check that the energy conservation relation (5.19) can be modified, as in Sects. 5.1.2.1 and 5.1.2.2, if a Silver–Müller ABC is imposed on part of the boundary. Again, this ensures energy control and uniqueness.

  9. 9.

    As shown in Sects. 5.1.1 and 5.1.2, these three settings exhibit similar properties. This is once more the case here.

  10. 10.

    The situation is different for time-harmonic problems (see Chap. 8).

References

  1. S. Abarbanel, D. Gottlieb, A mathematical analysis of the PML method. J. Comput. Phys. 134, 357–363 (1997)

    Article  MathSciNet  Google Scholar 

  2. S. Abarbanel, D. Gottlieb, J.S. Hestaven, Non-linear PML equations for time-dependent electromagnetics in three dimensions. J. Sci. Comput. 28, 125–137 (2006)

    Article  MathSciNet  Google Scholar 

  3. G. Amendola, On the asymptotic behavior for an electromagnetic system with a dissipative boundary condition. IMA J. Appl. Math. 70, 270–292 (2005)

    Article  MathSciNet  Google Scholar 

  4. F. Assous, P. Ciarlet, Jr., S. Labrunie, Theoretical tools to solve the axisymmetric Maxwell equations. Math. Methods Appl. Sci. 25, 49–78 (2002)

    Article  MathSciNet  Google Scholar 

  5. H. Barucq, M. Fontes, Well-posedness and exponential stability of Maxwell-like systems coupled with strongly absorbing layers. J. Math. Pures Appl. 87, 253–273 (2007)

    Article  MathSciNet  Google Scholar 

  6. H. Barucq, B. Hanouzet, Asymptotic behavior of solutions to Maxwell’s system in bounded domains with absorbing Silver-Müller’s condition on the exterior boundary. Asymptot. Anal. 15, 25–40 (1997)

    MathSciNet  MATH  Google Scholar 

  7. E. Bécache, S. Fauqueux, P. Joly, Stability of perfectly matched layers, group velocities and anisotropic waves. J. Comput. Phys. 188, 399–433 (2003)

    Article  MathSciNet  Google Scholar 

  8. E. Bécache, P. Joly, On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations. Math. Model. Numer. Anal. 36, 87–119 (2002)

    Article  MathSciNet  Google Scholar 

  9. A. de la Bourdonnaye, Décomposition de \(H_{div}^{-1/2}(\varGamma )\) et nature de l’opérateur de Steklov-Poincaré du problème extérieur de l’électromagnétisme. C. R. Acad. Sci. Paris Ser. I 316, 369–372 (1993)

    Google Scholar 

  10. A. Buffa, Hodge decompositions on the boundary of nonsmooth domains: the multi-connected case. Math. Models Methods App. Sci. 11, 147–176 (2001)

    MathSciNet  MATH  Google Scholar 

  11. A. Buffa, P. Ciarlet, Jr., On traces for functional spaces related to Maxwell’s equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24, 31–48 (2001)

    MATH  Google Scholar 

  12. A. Buffa, M. Costabel, C. Schwab, Boundary element methods for Maxwell’s equations on non-smooth domains. Numer. Math. 92, 679–710 (2002)

    Article  MathSciNet  Google Scholar 

  13. M. Cassier, P. Joly, M. Kachanovska, Mathematical models for dispersive electromagnetic waves: an overview. Comput. Math. Appl. 74, 2792–2830 (2017)

    Article  MathSciNet  Google Scholar 

  14. P.G. Ciarlet, P. Ciarlet, Jr., Another approach to linearized elasticity and Korn’s inequality. C. R. Acad. Sci. Paris Ser. I 339, 307–312 (2004)

    Article  MathSciNet  Google Scholar 

  15. M. Costabel, M. Dauge, S. Nicaise, Singularities of Maxwell interface problems. Modél. Math. Anal. Numér. 33, 627–649 (1999)

    Article  MathSciNet  Google Scholar 

  16. J. Diaz, P. Joly, An analysis of higher order boundary conditions for the wave equation. SIAM J. Appl. Math. 65, 1547–1575 (2005)

    Article  MathSciNet  Google Scholar 

  17. M. Fabrizio, A. Morro, Electromagnetism of Continuous Media (Oxford University Press, Oxford, 2003)

    Book  Google Scholar 

  18. P. Grisvard, Singularities in Boundary Value Problems. RMA, vol. 22 (Masson, Paris, 1992)

    Google Scholar 

  19. T. Hagstrom, A. Mar-Or, D. Givoli, High-order local absorbing conditions for the wave equation: extensions and improvements. J. Comput. Phys. 227, 3322–3357 (2007)

    Article  MathSciNet  Google Scholar 

  20. A.D. Ioannidis, G. Kristensson, I.G. Stratis, On the well-posedness of the Maxwell system for linear bianisotropic media. SIAM J. Math. Anal. 44, 2459–2473 (2012)

    Article  MathSciNet  Google Scholar 

  21. J.-C. Nédélec, Acoustic and Electromagnetic Equations. Applied Mathematical Sciences, vol. 144 (Springer, New York, 2001)

    Book  Google Scholar 

  22. K.D. Phung, Controllability and stabilization of electromagnetic waves. ESAIM Control Optim. Calc. Var. 5, 87–137 (2000)

    Article  MathSciNet  Google Scholar 

  23. F. Poupaud, M. Remaki, Existence et unicité des solutions du système de Maxwell pour des milieux hétérogènes non réguliers. C. R. Acad. Sci. Paris Ser. I 330, 99–103 (2000)

    Article  MathSciNet  Google Scholar 

  24. M. Remaki, Méthodes numériques pour les équations de Maxwell instationnaires en milieu hétérogène, PhD Thesis, Ecole des Ponts et Chaussées, Paris, France, 1999 (in French)

    Google Scholar 

  25. G.F. Roach, I.G. Stratis, A.N. Yannacopoulos, Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics (Princeton University Press, Princeton, 2012)

    MATH  Google Scholar 

  26. M. Slodicka, S. Durand, Fully discrete finite element scheme for Maxwell’s equations with non-linear boundary condition. J. Math. Anal. Appl. 375, 230–244 (2011)

    Article  MathSciNet  Google Scholar 

  27. I. Terrasse, Résolution mathématique et numérique des équations de Maxwell instationnaires par une méthode de potentiels retardés, PhD Thesis, Ecole Polytechnique, Palaiseau, France, 1993 (in French)

    Google Scholar 

  28. V. Vinoles, Problèmes d’interface en présence de métamatériaux : modélisation, analyse et simulations, PhD Thesis, Université Paris-Saclay, France, 2016 (in French)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Assous, F., Ciarlet, P., Labrunie, S. (2018). Analyses of Exact Problems: First-Order Models. In: Mathematical Foundations of Computational Electromagnetism. Applied Mathematical Sciences, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-319-70842-3_5

Download citation

Publish with us

Policies and ethics