Skip to main content

A Quick View of Lagrangian Floer Homology

  • Chapter
  • First Online:
Geometrical Themes Inspired by the N-body Problem

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2204))

  • 1013 Accesses

Abstract

In this note we present a brief introduction to Lagrangian Floer homology and its relation to the solution to the Arnol’d Conjecture, on the minimal number of non-degenerate fixed points of a Hamiltonian diffeomorphism. We start with the basic definition of a critical point on smooth manifolds, in order to sketch some aspects of Morse theory. Introduction to the basics concepts of symplectic geometry are also included with the idea of understanding the statement of the Arnol’d Conjecture and how it is related to the intersection of Lagrangian submanifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Arnol’d, Sur une propriété topologique des applications globalement canoniques de la mécanique classique. C. R. Acad. Sci. Paris 261, 3719–3722 (1965)

    MathSciNet  MATH  Google Scholar 

  2. V.I. Arnol’d, Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60 (Springer, New York, 1993). Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition

    Google Scholar 

  3. M. Audin, M. Damian, Morse Theory and Floer Homology. Universitext (Springer/EDP Sciences, London/Les Ulis, 2014). Translated from the 2010 French original by Reinie Erné

    Book  MATH  Google Scholar 

  4. D. Auroux, A beginner’s introduction to Fukaya categories, in Contact and Symplectic Topology. Bolyai Society Mathematical Studies, vol. 26 (János Bolyai Mathematical Society, Budapest, 2014), pp. 85–136

    Google Scholar 

  5. A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. Comment. Math. Helv. 53(2), 174–227 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Bott, Morse theory indomitable. Inst. Hautes Études Sci. Publ. Math. 68, 99–114 (1988/1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Cannas da Silva, Lectures on Symplectic Geometry. Lecture Notes in Mathematics, vol. 1764 (Springer, Berlin, 2001)

    Google Scholar 

  8. C.C. Conley, E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnol’d. Invent. Math. 73(1), 33–49 (1983)

    Google Scholar 

  9. Y.M. Eliashberg, A theorem on the structure of wave fronts and its application in symplectic topology. Funktsional. Anal. i Prilozhen. 21(3), 65–72, 96 (1987)

    Google Scholar 

  10. A. Floer, Morse theory for Lagrangian intersections. J. Differ. Geom. 28(3), 513–547 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Floer, Witten’s complex and infinite-dimensional Morse theory. J. Differ. Geom. 30(1), 207–221 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Fortune, A. Weinstein, A symplectic fixed point theorem for complex projective spaces. Bull. Am. Math. Soc. (N.S.) 12(1), 128–130 (1985)

    Google Scholar 

  13. K. Fukaya, Morse homotopy, A -category, and Floer homologies, in Proceedings of GARC Workshop on Geometry and Topology’93 (Seoul, 1993). Lecture Notes Series, vol. 18 (Seoul National University, Seoul, 1993), pp. 1–102

    Google Scholar 

  14. K. Fukaya, K. Ono, Arnold conjecture and Gromov-Witten invariant. Topology 38(5), 933–1048 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Part I and Part II. AMS/IP Studies in Advanced Mathematics, vol. 46 (American Mathematical Society/International Press, Providence, RI/Somerville, MA, 2009)

    Google Scholar 

  16. K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, Lagrangian Floer theory on compact toric manifolds. I. Duke Math. J. 151(1), 23–174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. R.E. Gompf, Symplectically aspherical manifolds with nontrivial π 2. Math. Res. Lett. 5(5), 599–603 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Gromov, Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Hofer, D.A. Salamon, Floer homology and Novikov rings, in The Floer Memorial Volume. Progress in Mathematics, vol. 133 (Birkhäuser, Basel, 1995), pp. 483–524

    Google Scholar 

  20. G. Liu, G. Tian, Floer homology and Arnold conjecture. J. Differ. Geom. 49(1), 1–74 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. Matsumoto, An Introduction to Morse Theory. Translations of Mathematical Monographs, vol. 208 (American Mathematical Society, Providence, RI, 2002). Translated from the 1997 Japanese original by Kiki Hudson and Masahico Saito, Iwanami Series in Modern Mathematics

    Google Scholar 

  22. D. McDuff, Notes on Kuranishi atlases. arXiv:1411.4306

    Google Scholar 

  23. D. McDuff, D. Salamon, Introduction to Symplectic Topology, 2nd edn. Oxford Mathematical Monographs (The Clarendon Press/Oxford University Press, New York, 1998)

    MATH  Google Scholar 

  24. D. McDuff, D. Salamon, J-Holomorphic Curves and Symplectic Topology, 2nd edn. A. M. S. Colloquium Publications, vol. 52 (American Mathematical Society, Providence, RI, 2012)

    Google Scholar 

  25. D. McDuff, K. Wehrheim, The fundamental class of smooth Kuranishi atlases with trivial isotropy. arXiv:1508.01560

    Google Scholar 

  26. D. McDuff, K. Wehrheim, Smooth Kuranishi atlases with isotropy. arXiv:1508.01556

    Google Scholar 

  27. D. McDuff, K. Wehrheim, The topology of Kuranishi atlases. arXiv:1508.01844

    Google Scholar 

  28. J. Milnor, Morse Theory. Based on Lecture Notes by M. Spivak and R. Wells. Annals of Mathematics Studies, vol. 51 (Princeton University Press, Princeton, NJ, 1963)

    Google Scholar 

  29. L.I. Nicolaescu, An Invitation to Morse Theory. Universitext (Springer, New York, 2007)

    MATH  Google Scholar 

  30. Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I. Commun. Pure Appl. Math. 46(7), 949–993 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. II. (CPn, RPn). Commun. Pure Appl. Math. 46(7), 995–1012 (1993)

    Google Scholar 

  32. Y.-G. Oh, Symplectic Topology and Floer Homology. Vol. 1: Symplectic Geometry and Pseudoholomorphic Curves. New Mathematical Monographs, vol. 28 (Cambridge University Press, Cambridge, 2015)

    Google Scholar 

  33. Y.-G. Oh, Symplectic Topology and Floer Homology. Vol. 2: Floer Homology and Its Applications. New Mathematical Monographs, vol. 29 (Cambridge University Press, Cambridge, 2015)

    Google Scholar 

  34. K. Ono, On the Arnol’d conjecture for weakly monotone symplectic manifolds. Invent. Math. 119(3), 519–537 (1995)

    Article  MathSciNet  Google Scholar 

  35. J. Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves. Geom. Topol. 20(2), 779–1034 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. J.W. Robbin, D.A. Salamon, Asymptotic behaviour of holomorphic strips. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(5), 573–612 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Ruan, Virtual neighborhoods and pseudo-holomorphic curves, in Proceedings of 6th Gökova Geometry-Topology Conference, vol. 23 (1999), pp. 161–231

    Google Scholar 

  38. D. Salamon, Lectures on Floer homology, in Symplectic Geometry and Topology (Park City, UT, 1997). IAS/Park City Mathematics Series, vol. 7 (American Mathematical Society, Providence, RI, 1999), pp. 143–229

    Google Scholar 

  39. M. Schwarz, Morse Homology. Progress in Mathematics, vol. 111 (Birkhäuser Verlag, Basel, 1993)

    Google Scholar 

  40. P. Seidel, Fukaya Categories and Picard-Lefschetz Theory. Zurich Lectures in Advanced Mathematics (European Mathematical Society, Zürich, 2008)

    Google Scholar 

  41. L.W. Tu, An Introduction to Manifolds, 2nd edn. Universitext (Springer, New York, 2011)

    Book  MATH  Google Scholar 

  42. E. Witten, Supersymmetry and Morse theory. J. Differ. Geom. 17(4), 661–692 (1982/1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Pedroza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pedroza, A. (2018). A Quick View of Lagrangian Floer Homology. In: Hernández-Lamoneda, L., Herrera, H., Herrera, R. (eds) Geometrical Themes Inspired by the N-body Problem. Lecture Notes in Mathematics, vol 2204. Springer, Cham. https://doi.org/10.1007/978-3-319-71428-8_3

Download citation

Publish with us

Policies and ethics