Skip to main content

The Dependency of Probabilistic Tsunami Hazard Assessment on Magnitude Limits of Seismic Sources in the South China Sea and Adjoining Basins

  • Chapter
  • First Online:
Earthquakes and Multi-hazards Around the Pacific Rim, Vol. I

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

The South China Sea (SCS) and its adjacent small basins including Sulu Sea and Celebes Sea are commonly identified as tsunami-prone region by its historical records on seismicity and tsunamis. However, quantification of tsunami hazard in the SCS region remained an intractable issue due to highly complex tectonic setting and multiple seismic sources within and surrounding this area. Probabilistic Tsunami Hazard Assessment (PTHA) is performed in the present study to evaluate tsunami hazard in the SCS region based on a brief review on seismological and tsunami records. 5 regional and local potential tsunami sources are tentatively identified, and earthquake catalogs are generated using Monte Carlo simulation following the Tapered Gutenberg–Richter relationship for each zone. Considering a lack of consensus on magnitude upper bound on each seismic source, as well as its critical role in PTHA, the major concern of the present study is to define the upper and lower limits of tsunami hazard in the SCS region comprehensively by adopting different corner magnitudes that could be derived by multiple principles and approaches, including TGR regression of historical catalog, fault-length scaling, tectonic and seismic moment balance, and repetition of historical largest event. The results show that tsunami hazard in the SCS and adjoining basins is subject to large variations when adopting different corner magnitudes, with the upper bounds 2–6 times of the lower. The probabilistic tsunami hazard maps for specified return periods reveal much higher threat from Cotabato Trench and Sulawesi Trench in the Celebes Sea, whereas tsunami hazard received by the coasts of the SCS and Sulu Sea is relatively moderate, yet non-negligible. By combining empirical method with numerical study of historical tsunami events, the present PTHA results are tentatively validated. The correspondence lends confidence to our study. Considering the proximity of major sources to population-laden cities around the SCS region, the tsunami hazard and risk should be further highlighted in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K., & Shuto, N. (2007). Logic-tree approach for probabilistic tsunami hazard analysis and its application to the Japanese coasts. Pure and Applied Geophysics, 164, 577–592.

    Google Scholar 

  • Assatourians, K., & Atkinson, G. M. (2013). EqHaz: an opensource probabilistic seismic-hazard code based on the monte carlo simulation approach. Seismological Research Letters, 84, 516–524.

    Google Scholar 

  • Bautista, M.L.P., Bautista, B.C., Salcedo. J.C. & Narag. I.C. (2012). Philippine tsunamis and seiches (1589–2012) (pp. 1–111).

    Google Scholar 

  • Bird, P. (2003). An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems, 4(3), 1027. doi: https://doi.org/10.1029/2001gc000252.

  • Bird, P., & Kagan, Y. Y. (2004). Plate-tectonic analysis of shallow seismicity: apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Bulletin of the Seismological Society of America, 94, 2380–2399.

    Google Scholar 

  • Burbidge, D., Cummins, P. R., Mleczko, R., & Thio, H. K. (2008). A Probabilistic tsunami hazard assessment for western Australia. Pure and Applied Geophysics, 165, 2059–2088.

    Google Scholar 

  • Burroughs, S. M., & Tebbens, S. F. (2001). Upper-truncated power laws in natural systems. Pure and Applied Geophysics, 158, 741–757.

    Google Scholar 

  • Ca, V. T., & Xuyen, N. D. (2008). Tsunami risk along Vietnamese coast. Journal of Water Resources and Environmental Engineering, 23, 24–33.

    Google Scholar 

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 1583–1606.

    Google Scholar 

  • Dao, M. H., Tkalich, P., Chan, E. S., & Megawati, K. (2009). Tsunami propagation scenarios in the South China Sea. Journal of Asian Earth Sciences, 36, 67–73.

    Google Scholar 

  • Das, R., Wason, H. R., & Sharma, M. L. (2011). Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude. Natural Hazards, 59, 801–810.

    Google Scholar 

  • Fukutani, Y., Suppasri, A., & Imamura, F. (2014). Stochastic analysis and uncertainty assessment of tsunami wave height using a random source parameter model that targets a Tohokutype earthquake fault. Stochastic Environmental Research and Risk Assessment, 29, 1763–1779.

    Google Scholar 

  • Galgana, G., Hamburger, M., McCaffrey, R., Corpuz, E., & Chen, Q. (2007). Analysis of crustal deformation in Luzon, Philippines using geodetic observations and earthquake focal mechanisms. Tectonophysics, 432, 63–87.

    Google Scholar 

  • Geist, E. L., & Parsons, T. (2006). Probabilistic analysis of tsunami hazards. Natural Hazards, 37, 277–314.

    Google Scholar 

  • Goda, K., Li, S., Mori, N., & Yasuda, T. (2015). Probabilistic tsunami damage assessment considering stochastic source models: application to the 2011 Tohoku earthquake. Coastal Engineering Journal, 57, 1550015.

    Google Scholar 

  • Goda, K., & Song, J., (2015). Uncertainty modeling and visualization for tsunami hazard and risk mapping: A casestudy for the 2011 Tohoku earthquake. Stochastic Environmental Research and Risk Assessment. doi: https://doi.org/10.1007/s00477-015-1146-x.

  • González, F. I., Geist, E. L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C. E., et al. (2009). Probabilistic tsunami hazard assessment at seaside, Oregon, for near- and far-field seismic sources. Journal of Geophysical Research: Oceans, 114, C11023.

    Google Scholar 

  • Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1.0: a three-dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth, 117, B01302.

    Google Scholar 

  • Heidarzadeh, M., & Kijko, A. (2010). A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Natural Hazards, 58, 577–593.

    Google Scholar 

  • Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C., & Faccenna, C. (2011). Physical characteristics of subduction interface type seismogenic zones revisited. Geochemistry, Geophysics, Geosystems, 12, Q01004.

    Google Scholar 

  • Horspool, N., Pranatyo, I., Griffin, J., Latief, H., Natawidjaja, D. H., Kongko, W., et al. (2014). A probabilistic tsunami hazard assessment for Indonesia. Natural Hazards and Earth System Sciences, 14, 3105–3122.

    Google Scholar 

  • Hsu, Y. J., Yu, S. B., Song, T. R. A., & Bacolcolk, T. (2012). Plate coupling along the Manila subduction zone between Taiwan and northern Luzon. Journal of Asian Earth Sciences, 51, 98–108.

    Google Scholar 

  • Huang, Z., Wu, T. R., Tan, S. K., Megawati, K., Shaw, F., Liu, X., & Pan, T. C. (2009). Tsunami hazard from the subduction Megathrust of the South China Sea: part II. Hydrodynamic modeling and possible impact on Singapore. Journal of Asian Earth Sciences, 36, 93–97.

    Google Scholar 

  • Kagan, Y. Y. (1997). Seismic moment-frequency relation for shallow earthquakes: regional comparison. Journal of Geophysical Research: Solid Earth, 102, 2835–2852.

    Google Scholar 

  • Kagan, Y. Y. (2002a). Seismic moment distribution revisited: I. Statistical results. Geophysical Journal International, 148, 520–541.

    Google Scholar 

  • Kagan, Y. Y. (2002b). Seismic moment distribution revisited: II. Moment conservation principle. Geophysical Journal International, 149, 731–754.

    Google Scholar 

  • Kagan, Y. Y. (2003). Accuracy of modern global earthquake catalogs. Physics of the Earth and Planetary Interiors, 135, 173–209.

    Google Scholar 

  • Kagan, Y. Y., & Jackson, D. D. (2013). Tohoku earthquake: a surprise? Bulletin of the Seismological Society of America, 103, 1181–1194.

    Google Scholar 

  • Kreemer, C., & Holt, W. E. (2000). Active deformation in eastern Indonesia and the Philippines from GPS and seismicity data. Journal of Geophysical Research: Solid Earth, 105, 663–680.

    Google Scholar 

  • Lane, E. M., Gillibrand, P. A., Wang, X., & Power, W. (2013). A probabilistic tsunami hazard study of the Auckland Region, Part I: propagation modelling and tsunami hazard assessment at the shoreline. Pure and Applied Geophysics, 170, 1621–1634.

    Google Scholar 

  • Liu, Y., Santos, A., Wang, S. M., Shi, Y., Liu, H., & Yuen, D. A. (2007). Tsunami hazards along Chinese coast from potential earthquakes in South China Sea. Physics of the Earth and Planetary Interiors, 163, 233–244.

    Google Scholar 

  • Lorito, S., Selva, J., Basili, R., Romano, F., Tiberti, M. M., & Piatanesi, A. (2015). Probabilistic hazard for seismically induced tsunamis: accuracy and feasibility of inundation maps. Geophysical Journal International, 200, 574–588.

    Google Scholar 

  • Løvholt, F., Kühn, D., Bungum, H., Harbitz, C. B., & Glimsdal, S. (2012). Historical tsunamis and present tsunami hazard in eastern Indonesia and the southern Philippines. Journal of Geophysical Research: Solid Earth, 117, B09310.

    Google Scholar 

  • Megawati, K., Shaw, F., Sieh, K., Huang, Z., Wu, T. R., Lin, Y., et al. (2009). Tsunami hazard from the subduction megathrust of the South China Sea: Part I. Source characterization and the resulting tsunami. Journal of Asian Earth Sciences, 36, 13–20.

    Google Scholar 

  • Nguyen, P. H., Bui, Q. C., & Nguyen, X. D. (2012). Investigation of earthquake tsunami sources, capable of affecting Vietnamese coast. Natural Hazards, 64, 311–327.

    Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135–1154.

    Google Scholar 

  • Okal, E. A., Synolakis, C. E., & Kalligeris, N. (2011). Tsunami Simulations for Regional Sources in the South China and Adjoining Seas. Pure and Applied Geophysics 168, 1153–1173.

    Google Scholar 

  • Parsons, T., & Geist, E. L. (2008). Tsunami probability in the Caribbean Region. Pure and Applied Geophysics, 165, 2089–2116.

    Google Scholar 

  • Power, W., Downes, G., & Stirling, M. (2007). Estimation of Tsunami Hazard in New Zealand due to South American Earthquakes. Pure and Applied Geophysics, 164, 547–564.

    Google Scholar 

  • Rangin, C., Pichon, X. L., Mazzotti, S., Pubellier, M., Chamot-Rooke, N., Aurelio, M., et al. (1999). Plate convergence measured by GPS across the Sundaland Philippine Sea plate deformed boundary: the Philippines and eastern Indonesia. Geophysical Journal International, 139, 296–316.

    Google Scholar 

  • Rong, Y., Jackson, D. D., Magistrale, H., & Goldfinger, C. (2014). Magnitude limits of subduction zone earthquakes. Bulletin of the Seismological Society of America,. doi: https://doi.org/10.1785/0120130287.

  • Rowlett, H., & Kellecher, J. (1976). Evolving seismic and tectonic patterns along the western margin of the Philippine Sea plate. Journal Geophysical Research, 81, 3518–3524.

    Google Scholar 

  • Ruangrassamee, A., & Saelem, N. (2009). Effect of Tsunamis generated in the Manila Trench on the Gulf of Thailand. Journal of Asian Earth Sciences, 36, 56–66.

    Google Scholar 

  • Scholz, C. H., & Campos, J. (2012). The seismic coupling of subduction zones revisited. Journal Geophysical Research, 117, B05310.

    Google Scholar 

  • Selva, J., & Marzocchi, W. (2004). Focal parameters, depth estimation, and plane selection of the worldwide shallow seismicity with M s ≥ 7.0 for the period 1900–1976. Geochem. Geophys. Geosys. 5, Q05005.

    Google Scholar 

  • Seno, T., & Kurita, K. (1978). Focal mechanisms and tectonics in Taiwan-Philippine region. Journal of Physics of the Earth, 26(Supplement), 249–263.

    Google Scholar 

  • Socquet, A., Simons, W., Vigny, C., McCaffrey, R., Subarya, C., Sarsito, D., et al. (2006). Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data. Journal Geophysical Research, 111, B08409.

    Google Scholar 

  • Sørensen, M. B., Spada, M., Babeykou, A., Wiemer, S., & Grüntha, G. (2012). Probabilistic tsunami hazard in the Mediterranean Sea. Journal Geophysical Research, 117, B01305.

    Google Scholar 

  • Suppasri, A., Imamura, F., & Koshimura, S. (2012). Tsunami hazard and casualty estimation in a coastal area that neighbors the Indian Ocean and South China Sea. Journal of Earthquake and Tsunami, 6(2), 1250010.

    Google Scholar 

  • Thio, H. K., Somerville, P., & Ichinose, G. (2012). Probabilistic analysis of strong motion and tsunami hazards in South East Asia. Journal of Earthquake and Tsunami, 2, 119–137.

    Google Scholar 

  • Wang, K., & Bilek, S. L. (2014). Invited review paper: fault creep caused by subduction of rough seafloor relief. Tectonophysics, 610, 1–24.

    Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.

    Google Scholar 

  • Wu, T. R., & Huang, H. C. (2009). Modeling tsunami hazards from Manila trench to Taiwan. Journal of Asian Earth Sciences, 36, 21–28.

    Google Scholar 

  • Zhu, J., Qiu, X., & Zhan, W. (2005). Focal mechanism solutions and its tectionic significance in the trench of eastern South China Sea. Acta Seismologica Sinica, 5, 280–289.

    Google Scholar 

Download references

Acknowledgments

We appreciate the sharing of PB2002 Global Plate Model and computing codes of Maximum Likelihood method by Peter Bird and Yan Y. Kagan. COMCOT source codes developed by Philips Liu and Xiaoming Wang can be downloaded from ceeserver.cee.cornell.edu/pll-group/comcot_down.htm. EQHAZ package for Monte Carlo simulation is downloaded from http://www.seismotoolbox.ca/EQHAZ.html. We especially thank Dr. Bautista and Dr. Narag from the Philippine Institute of Volcanology and Seismology (PHIVOLCS) to provide technical report of ‘Philippine Tsunamis and Seiches (1589–2012)’, which is very useful for this study. Two anonymous reviewers also provide very useful and insightful comments on the manuscript. This study is supported by Public science and technology research funds projects of ocean (No. 201405026) and GASI-GEOGE-05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H. et al. (2018). The Dependency of Probabilistic Tsunami Hazard Assessment on Magnitude Limits of Seismic Sources in the South China Sea and Adjoining Basins. In: Zhang, Y., Goebel, T., Peng, Z., Williams, C., Yoder, M., Rundle, J. (eds) Earthquakes and Multi-hazards Around the Pacific Rim, Vol. I. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-71565-0_11

Download citation

Publish with us

Policies and ethics