Skip to main content

Crofton Formulae for Tensorial Curvature Measures: The General Case

  • Chapter
  • First Online:
Analytic Aspects of Convexity

Part of the book series: Springer INdAM Series ((SINDAMS,volume 25))

Abstract

The tensorial curvature measures are tensor-valued generalizations of the curvature measures of convex bodies. On convex polytopes, there exist further generalizations some of which also have continuous extensions to arbitrary convex bodies. In a previous work, we obtained kinematic formulae for all (generalized) tensorial curvature measures. As a consequence of these results, we now derive a complete system of Crofton formulae for such (generalized) tensorial curvature measures. These formulae express the integral mean of the (generalized) tensorial curvature measures of the intersection of a given convex body (resp. polytope, or finite unions thereof) with a uniform affine k-flat in terms of linear combinations of (generalized) tensorial curvature measures of the given convex body (resp. polytope, or finite unions thereof). The considered generalized tensorial curvature measures generalize those studied formerly in the context of Crofton-type formulae, and the coefficients involved in these results are substantially less technical and structurally more transparent than in previous works. Finally, we prove that essentially all generalized tensorial curvature measures on convex polytopes are linearly independent. In particular, this implies that the Crofton formulae which we prove in this contribution cannot be simplified further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Alesker, Description of continuous isometry covariant valuations on convex sets. Geom. Dedicata 74, 241–248 (1999)

    Google Scholar 

  2. E. Artin, The Gamma Function (Holt, Rinehart and Winston, New York, 1964)

    Google Scholar 

  3. A. Bernig, D. Hug, Kinematic formulas for tensor valuations. J. Reine Angew. Math. (2015). arXiv:1402.2750v2. https://doi.org/10.1515/crelle-2015-002

    Google Scholar 

  4. H. Federer, Curvature measures. Trans. Amer. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Glasauer, Integralgeometrie konvexer Körper im sphärischen Raum. Dissertation. Albert-Ludwigs-Universität Freiburg, Freiburg (1995)

    MATH  Google Scholar 

  6. S. Glasauer, A generalization of intersection formulae of integral geometry. Geom. Dedicata 68, 101–121 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Hadwiger, Additive Funktionale k-dimensionaler Eikörper I. Arch. Math. 3, 470–478 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Hadwiger, R. Schneider, Vektorielle Integralgeometrie. Elem. Math. 26, 49–57 (1971)

    Google Scholar 

  9. D. Hug, R. Schneider, Local tensor valuations. Geom. Funct. Anal. 24, 1516–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Hug, R. Schneider, SO(n) covariant local tensor valuations on polytopes. Mich. Math. J. 66, 637–659 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Hug, R. Schneider, Rotation covariant local tensor valuations on convex bodies. Commun. Contemp. Math. 19, 1650061, 31 pp. (2017). https://doi.org/10.1142/S0219199716500619

  12. D. Hug, J.A. Weis, Kinematic formulae for tensorial curvature measures. Ann. Mat. Pura Appl. arXiv: 1612.08427 (2016)

    Google Scholar 

  13. D. Hug, J.A. Weis, Crofton formulae for tensor-valued curvature measures, in Tensor Valuations and their Applications in Stochastic Geometry and Imaging, ed. by M. Kiderlen, E.B. Vedel Jensen. Lecture Notes in Mathematics, vol. 2177 (Springer, Berlin, 2017), pp. 111–156. https://doi.org/10.1007/978-3-319-51951-75

  14. D. Hug, J.A. Weis, Integral formulae for Minkowski tensors. arXiv: 1712.09699 (2017)

    Google Scholar 

  15. D. Hug, R. Schneider, R. Schuster, Integral geometry of tensor valuations. Adv. Appl. Math. 41, 482–509 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Hug, R. Schneider, R. Schuster, The space of isometry covariant tensor valuations. Algebra i Analiz 19, 194–224 (2007); St. Petersburg Math. J. 19, 137–158 (2008)

    Google Scholar 

  17. M. Kiderlen, E.B. Vedel Jensen, Tensor Valuations and their Applications in Stochastic Geometry and Imaging. Lecture Notes in Mathematics, vol. 2177 (Springer, Berlin, 2017)

    Google Scholar 

  18. P. McMullen, Isometry covariant valuations on convex bodies. Rend. Circ. Mat. Palermo (2), Suppl. 50, 259–271 (1997)

    Google Scholar 

  19. K.R. Mecke, Additivity, convexity, and beyond: applications of Minkowski functionals in statistical physics, in Statistical Physics and Spatial Statistics, ed. by K.R. Mecke, D. Stoyan. Lecture Notes in Physics, vol. 554 (Springer, Berlin, 2000)

    Google Scholar 

  20. M. Saienko, Tensor-valued valuations and curvature measures in Euclidean spaces. PhD Thesis, University of Frankfurt (2016)

    Google Scholar 

  21. R. Schneider, Krümmungsschwerpunkte konvexer Körper. I. Abh. Math. Sem. Univ. Hamburg 37, 112–132 (1972)

    Article  MATH  Google Scholar 

  22. R. Schneider, Krümmungsschwerpunkte konvexer Körper. II. Abh. Math. Sem. Univ. Hamburg 37, 204–217 (1972)

    Article  MATH  Google Scholar 

  23. R. Schneider, Kinematische Berührmaße für konvexe Körper. Abh. Math. Sem. Univ. Hamburg 44, 12–23 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Schneider, Curvature measures of convex bodies. Ann. Mat. Pura Appl. 116, 101–134 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Schneider, Local tensor valuations on convex polytopes. Monatsh. Math. 171, 459–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and Its Applications, vol. 151 (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  27. R. Schneider, W. Weil, Stochastic and Integral Geometry (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  28. G.E. Schröder-Turk et al., Minkowski tensor shape analysis of cellular, granular and porous structures. Adv. Mat. 23, 2535–2553 (2011)

    Article  Google Scholar 

  29. A.M. Svane, E.B. Vedel Jensen, Rotational Crofton formulae for Minkowski tensors and some affine counterparts. Adv. Appl. Math. 91, 44–75 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors were supported in part by DFG grants FOR 1548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hug, D., Weis, J.A. (2018). Crofton Formulae for Tensorial Curvature Measures: The General Case. In: Bianchi, G., Colesanti, A., Gronchi, P. (eds) Analytic Aspects of Convexity. Springer INdAM Series, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-71834-7_3

Download citation

Publish with us

Policies and ethics