Skip to main content

Thermogravimetric Analysis of Simultaneous Decomposition and Formation of MgB2

  • Conference paper
  • First Online:
Magnesium Technology 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

This study provides the simultaneous thermogravimetric (TGA) decomposition and formation of MgB2. This thermal decomposition of MgB2 to MgB4 was investigated to determine the kinetic barriers associated with the decomposition process. At the same time, the formation of MgB2 from MgB4 was also studied. A list of models available from the literature was also validated in the present study by using the Coats-Redfern equation to determine the mechanism involved in the decomposition and formation reactions. A second order reaction model was more linearly fitted with the CR equation than other available models. A computational approach was used to determine the precise reaction order (n = 2.2) for both decomposition and formation. The activation energy of decomposition was 205.81 ± 1.5 kJ/mol and formation was 241.5 ± 2.6 kJ/mol, both of which are in close agreement with the literature. The standard formation enthalpy of MgB2 (−18.16 ± 1.78 kJ/mol) and MgB4 (−13.86 ± 0.71 kJ/mol) was also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature, 410, 63 (2001).

    Google Scholar 

  2. D. H. A. Blank, H. Hilgenkamp, A. Brinkman, D. Mijatovic, G. Rijnders, and H. Rogalla, Superconducting Mg–B films by pulsed-laser deposition in an in situ two-step process using multicomponent targets, Applied Physics Letters, 79, 394–396 (2001).

    Google Scholar 

  3. K. Ueda and M. Naito, As-grown superconducting MgB 2 thin films prepared by molecular beam epitaxy, Applied Physics Letters, 79, 2046–2048 (2001).

    Google Scholar 

  4. W. Jo, J. U. Huh, T. Ohnishi, A. F. Marshall, M. R. Beasley, and R. H. Hammond, In situ growth of superconducting MgB2 thin films with preferential orientation by molecular-beam epitaxy, Applied Physics Letters, 80, 3563–3565 (2002).

    Google Scholar 

  5. S.-D. Bu, D. M. Kim, J. H. Choi, J. Giencke, E. E. Hellstrom, D. C. Larbalestier, et al., Synthesis and properties of c-axis oriented epitaxial MgB 2 thin films, Applied Physics Letters, 81, 1851–1853 (2002).

    Google Scholar 

  6. M. E. Yakıncı, Y. Balcı, M. A. Aksan, H. I. Adigüzel, and A. Gencer, Degradation of superconducting properties in MgB 2 by formation of the MgB4 phase, Journal of superconductivity, 15, 607–611 (2002).

    Google Scholar 

  7. Z.-K. Liu, D. G. Schlom, Q. Li, and X. X. Xi, Thermodynamics of the Mg–B system: implications for the deposition of MgB2 thin films, Applied Physics Letters, 78, 3678–3680 (2001).

    Google Scholar 

  8. S. Kim, D. S. Stone, J.-I. Cho, C.-Y. Jeong, C.-S. Kang, and J.-C. Bae, Phase stability determination of the Mg–B binary system using the CALPHAD method and ab initio calculations, Journal of Alloys and Compounds, 470, 85–89 (2009).

    Google Scholar 

  9. L. P. Cook, R. Klein, W. Wong-Ng, Q. Huang, R. A. Ribeiro, and P. C. Canfield, Thermodynamics of MgB2 by calorimetry and Knudsen thermogravimetry, IEEE transactions on applied superconductivity, 15, 3227–3229, (2005).

    Google Scholar 

  10. G. Balducci, S. Brutti, A. Ciccioli, G. Gigli, P. Manfrinetti, A. Palenzona, et al., Thermodynamics of the intermediate phases in the Mg–B system, Journal of Physics and Chemistry of Solids, 66, 292–297 (2005).

    Google Scholar 

  11. S. Brutti, A. Ciccioli, G. Balducci, and G. Gigli, Vaporization thermodynamics of MgB2 and MgB4, Applied Physics Letters, 80, 2892–2894 (2002).

    Google Scholar 

  12. M. A. Imam and R. G. Reddy, Thermodynamic Studies on the Mg-B System Using Solid State Electrochemical Cells, in Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies, 457–464 (Springer, 2017).

    Google Scholar 

  13. Q. Z. Shi, Y. C. Liu, Q. Zhao, and Z. Q. Ma, Phase formation process of bulk MgB2 analyzed by differential thermal analysis during sintering, Journal of alloys and compounds, 458, 553–557 (2008).

    Google Scholar 

  14. Z. Ma and Y. Liu, The varied kinetics mechanisms in the synthesis of MgB2 from elemental powders by low-temperature sintering, Materials Chemistry and Physics, 126, 114–117 (2011).

    Google Scholar 

  15. Z. Y. Fan, D. G. Hinks, N. Newman, and J. M. Rowell, Experimental study of MgB2 decomposition, Applied Physics Letters, 79, 87–89 (2001).

    Google Scholar 

  16. M. R. Bogala and R. G. Reddy, Reaction kinetic studies of metal-doped magnesium silicides, Journal of Materials Science, 52, 11962–11976 (2017).

    Google Scholar 

  17. M. Ramachandran, D. Mantha, C. Williams, and R. G. Reddy, Oxidation and Diffusion in Ti-Al-(Mo, Nb) Intermetallics, Metallurgical and Materials Transactions A, 42, 202–210(2011).

    Google Scholar 

  18. I. C. I. Okafor, X. Wen, and R. G. Reddy, Interdiffusion in the TiO2 oxidation product of Ti3Al, Metallurgical and Materials Transactions A, 32, 491–495 (2001).

    Google Scholar 

  19. M. A. Imam, S. Jeelani, V. K. Rangari, M. G. Gome, and E. A. B. Moura, Electron-Beam Irradiation Effect on Thermal and Mechanical Properties of Nylon-6 Nanocomposite Fibers Infused with Diamond and Diamond Coated Carbon Nanotubes, International Journal of Nanoscience, 15, 1650004 (2016).

    Google Scholar 

  20. G. N. Lewis, Autocatalytic decomposition of silver oxide, 719–733 (1905).

    Google Scholar 

  21. P. Vallet, Theoretical study of the decomposition of bodies in linearly increasing temperature, Comptes Rendus, 200, 315–17 (1935).

    Google Scholar 

  22. E. S. Freeman and B. Carroll, The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate, The Journal of Physical Chemistry, 62, 394–397 (1958).

    Google Scholar 

  23. A. W. Coats and J. P. Redfern, Kinetic Parameters from Thermogravimetric Data, Nature, 201, 68–69 (1964).

    Google Scholar 

  24. A. Khawam and D. R. Flanagan, Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies, Thermochimica Acta, 436, 101–112 (2005).

    Google Scholar 

  25. Standard Test Method for Thermal Stability by Thermogravimetry, (ASTM International, 2011).

    Google Scholar 

  26. P. Toulemonde, N. Musolino, and R. Flükiger, High-pressure synthesis of pure and doped superconducting MgB2 compounds, Superconductor Science and Technology, 16, 231 (2003).

    Google Scholar 

  27. Y. Guo, W. Zhang, X. Zhou, and T. Bao, Magnesium boride sintered as high-energy fuel, Journal of thermal analysis and calorimetry, 113,787–791 (2013).

    Google Scholar 

  28. M. W. Chase, J. L. Curnutt, J. R. Downey, R. A. McDonald, A. N. Syverud, and E. A. Valenzuela, JANAF Thermochemical Tables, 1985 Supplement, Journal of Physical and Chemical Reference Data, 1, 226 (1985).

    Google Scholar 

  29. S. C. Yan, G. Yan, C. F. Liu, Y. F. Lu, and L. Zhou, Experimental study on phase transformation between MgB2 and MgB4, Journal of the American Ceramic Society, 90, 2184–2188 (2007).

    Google Scholar 

  30. G. A. Rybakova, L. A. Pavlinova, M. P. Morozova, and D. V. Korol’kov, Enthalpy of formation and nature of the phases in the beryllium-boron, magnesium-boron, iron-sulfur, cobalt-sulfur, and nickel-sulfur systems, Probl. Sov. Khim. Koordinates Doedin. 146 (1978).

    Google Scholar 

  31. S. M. Ariya, M. P. Morozova, G. A. Semenov, and G. A. Ryabakova, Magnesium-boron system and determination of the enthalpy of formation of magnesium borides, Zhur. Fiz. Khim., 45, 181 (1971).

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Science Foundation (NSF, Grant No. DMR-1310072). The authors thank Jacob Young for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramana G. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imam, M.A., Reddy, R.G. (2018). Thermogravimetric Analysis of Simultaneous Decomposition and Formation of MgB2 . In: Orlov, D., Joshi, V., Solanki, K., Neelameggham, N. (eds) Magnesium Technology 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72332-7_27

Download citation

Publish with us

Policies and ethics