Skip to main content

Winds in Complex Terrain

  • Chapter
  • First Online:
Wind Energy Meteorology

Part of the book series: Green Energy and Technology ((GREEN))

  • 1566 Accesses

Abstract

More and more onshore wind turbines are built away from flat regions near the coasts in complex (i.e. hilly or mountainous) terrain. The most favourite sites in complex terrain are at elevated positions such as hilltops. But sites in complex terrain also bear risks. In Japan, e.g. 1516 wind turbine accidents have been recorded between year 2004 and 2012, and 84% of them were for turbines in complex terrains. The longest downtime was associated with damage to main shafts or bearings with an average downtime of 5.7 months. Careful micrositing in complex terrains can prevent these accidents from happening (Watanabe and Uchida in Wind Eng 39:349–368, 2015). Therefore, this chapter introduces a few of the main flow features which influence wind energy yields in complex terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allnoch, N.: Windkraftnutzung im nordwestdeutschen Binnenland: Ein System zur Standortbewertung für Windkraftanlagen. Geographische Kommission für Westfalen, Münster, ARDEY-Verlag, 160 pp. (1992).

    Google Scholar 

  • Anderson P.S., Ladkin R.S., Renfrew I.A.: An Autonomous Doppler Sodar Wind Profiling System. J. Atmos. Oceanic Technol. 22, 1309–1325 (2005).

    Google Scholar 

  • Astley, R.J.: A Finite Element Frozen Vorticity Solution for Two-Dimensional Wind Flow over Hills. 6th Australasian Conf. on Hydraulics and Fluid Mechanics, Adelaide, Australia, 443–446 (1977).

    Google Scholar 

  • Atkinson B.W.: Meso-scale Atmospheric Circulations. Academic Press, London etc., 495 pp. (1981).

    Google Scholar 

  • Barthelmie, R. J., Wang, H., Doubrawa, P., Giroux, G., Pryor, S. C.: Effects of an escarpment on flow parameters of relevance to wind turbines. Wind Energy, 19(12), 2271–2286 (2016).

    Google Scholar 

  • Bowen, A.J.: Full Scale Measurements of the Atmospheric Turbulence over Two Escarpments. In: J.E. Cermak (ed.), Wind Engineering: Proc. 5th Internat. Conf., Fort Collins, Pergamon, 161–172 (1979).

    Google Scholar 

  • Bowen, A.J., D. Lindley,: A Wind-Tunnel Investigation of the Wind Speed and Turbulence Characteristics Close to the Ground over Various Escarpment Shapes. Bound.-Layer Meteorol. 12, 259–271 (1977).

    Google Scholar 

  • Bradley, E. F.: The Influence of Thermal Stability and Angle of Incidence on the Acceleration of Wind up a Slope. J. Wind Eng. Indust. Aerodynam. 15, 231–242 (1983).

    Google Scholar 

  • Caccia, J.-L., Guénard, V., Benech, B., Campistron, B., Drobinski, P.: Vertical velocity and turbulence aspects during Mistral events as observed by UHF wind profilers. Ann. Geophysicae 22, 3927–3936 (2004).

    Google Scholar 

  • Defant, F.: Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde. Arch. Meteorol. Geophys. Bioklimatol. A 1, 421–450 (1949).

    Google Scholar 

  • Emeis, S.: Vertical variation of frequency distributions of wind speed in and above the surface layer observed by sodar. Meteorol. Z. 10, 141–149 (2001).

    Google Scholar 

  • Emeis, S., H.P. Frank, F. Fiedler: Modification of air flow over an escarpment—Results from the Hjardemal experiment. Bound.-Lay. Meteorol. 74, 131–161. (1995).

    Google Scholar 

  • Finnigan, J.J., S.E. Belcher: Flow over a hill covered with a plant canopy. Quart. J. Roy. Meteor. Soc. 130, 1–29 (2004).

    Google Scholar 

  • Founda, D., M. Tombrou, D.P. Lalas, D.N. Asimakopoulos: Some measurements of turbulence characteristics over complex terrain. Bound.-Lay. Meteorol. 83, 221–245 (1997).

    Google Scholar 

  • Frank, H., K. Heldt, S. Emeis, F. Fiedler: Flow over an Embankment: Speed-Up and Pressure Perturbation. Bound.-Lay. Meteorol. 63, 163–182 (1993).

    Google Scholar 

  • Heimann, D., De Franceschi, M., Emeis, S., Lercher, P., Seibert, P. (Eds): Air pollution, traffic noise and related health effects in the Alpine space—a guide for authorities and consulters. ALPNAP comprehensive report. Università degli Studi di Trento, Trento, 335 pp. (2007) (Available from: http://www.ing.unitn.it/dica/tools/download/Quaderni/ALPNAP_CR_2007_Part_1.pdf).

  • Hoff, A.M.: Ein analytisches Verfahren zur Bestimmung der mittleren horizontalen Windgeschwindigkeiten über zweidimensionalen Hügeln. Ber. Inst. Meteorol. Klimatol. Univ. Hannover, 28, 68 pp. (1987).

    Google Scholar 

  • Jackson, P.S., J.C.R. Hunt: Turbulent wind flow over a low hill. Quart. J. Roy. Meteorol. Soc. 101, 929–955 (1975).

    Google Scholar 

  • Jensen, N.O.: A Note on Wind Generator Interaction. Risø-M-2411, Risø Natl. Lab., Roskilde (DK), 16 pp. (1983) (Available from http://orbit.dtu.dk/files/55857682/ris_m_2411.pdf).

  • Jensen, N.O., Petersen, E.L., Troen, I.: Extrapolation of Mean Wind Statistics with Special Regard to Wind Energy Applications, Report WCP-86, World Meteorol. Organization, Geneva, 85 pp. (1984).

    Google Scholar 

  • Justus, C.G., W.R. Hargraves, A. Mikhail, D. Graber: Methods for Estimating Wind Speed Frequency Distributions. J. Appl. Meteor. 17, 350–353 (1978).

    Google Scholar 

  • Kljun, N., P. Calanca, M.W. Rotach, H.P. Schmid: A simple two-dimensional parameterisation for flux footprint prediction (FFP). Geosci. Model Develop. 8, 3695–3713 (2015).

    Google Scholar 

  • Lugauer, M,, Winkler, P.: Thermal circulation in South Bavaria—climatology and synoptic aspects. Meteorol. Z. 14, 15–30 (2005).

    Google Scholar 

  • Mason, P. J.: Flow over the Summit of an Isolated Hill, Bound.-Lay. Meteorol. 37, 385–405 (1986).

    Google Scholar 

  • Mortensen, N.G., E-L. Petersen: Influence of topographical input data on the accuracy of wind flow modelling in complex terrain. European Wind Energy Conference & Exhibition 1997, Dublin, Ireland, October 1997 (1997).

    Google Scholar 

  • Panofsky, H.A., D. Larko, R. Lipschutz, G. Stone, E.F. Bradley, A.J. Bowen und J. Højstrup: Spectra of velocity components over complex terrain. Quart. J. Roy. Meteorol. Soc. 108, 215– 230 (1982).

    Google Scholar 

  • Pauscher, L., D. Callies, T. Klaas, T. Foken: Wind observations from a forested hill: Relating turbulence statistics to surface characteristics in hilly and patchy terrain. Meteorol. Z., prepubl. online (2017).

    Google Scholar 

  • Petersen, E.L., N.G. Mortensen, L. Landberg, J. Højstrup, H.P. Frank: Wind Power Meteorology. Part II: Siting and Models. Wind Energy, 1, 55–72 (1998b).

    Google Scholar 

  • Renfrew, I.A., Anderson, P.S.: Profiles of katabatic flow in summer and winter over Coats Land, Antarctica. Quart. J. Roy. Meteor. Soc. 132, 779–802 (2006).

    Google Scholar 

  • Smith, R.B.: The influence of mountains on the atmosphere. In: Landsberg HE, Saltzman B (Eds) Adv. Geophys. 21, 87–230 (1978).

    Google Scholar 

  • Steinacker, R.: Area-height distribution of a valley and its relation to the valley wind. Contr. Atmos. Phys. 57, 64–71 (1984).

    Google Scholar 

  • Steinfeld, G., S. Raasch, T. Markkanen: Footprints in homogeneously and heterogeneously driven boundary layers derived from a lagrangian stochastic particle model embedded into large-eddy simulation. Bound.-Layer Meteor. 129, 225–248 (2008).

    Google Scholar 

  • Sykes, R.I.: An Asymptotic Theory of Incompressible Turbulent Boundary Layer Flow over a Small-Lump. J. Fluid Mech. 101, 647–670 (1980).

    Google Scholar 

  • Taylor, P.A.: Numerical studies of neutrally stratified planetary boundary layer flow over gentle topography, I: Two-dimensional cases. Bound.-Lay. Meteorol., 12, 37–60 (1977).

    Google Scholar 

  • Taylor, P.A., Mason, P.J., Bradley, E.F.: Boundary-Layer Flow over Low Hills. Bound.-Lay. Meteorol. 39, 107–132 (1987).

    Google Scholar 

  • Troen, I., E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, Denmark. 656 pp. (1989).

    Google Scholar 

  • Vergeiner, I.: An energetic theory of slope winds. Meteorol. Atmos. Phys. 19, 189–191 (1982).

    Google Scholar 

  • Vergeiner, I., Dreiseitl, E.: Valley winds and slope winds—observations and elementary thoughts. Meteorol. Atmos. Phys. 36, 264–286 (1987).

    Google Scholar 

  • Watanabe, F. Uchida, T.: Micro-Siting of Wind Turbine in Complex Terrain: Simplified Fatigue Life Prediction of Main Bearing in Direct Drive Wind Turbines. Wind Eng., 39, 349–368 (2015).

    Google Scholar 

  • Wildmann, N., Bernard, S., Bange, J.: Measuring the local wind field at an escarpment using small remotely-piloted aircraft. Renewable Energy, 103, 613–619 (2017).

    Google Scholar 

  • Wood, N.: The onset of separation in neutral, turbulent flow over hills. Bound.-Lay. Meteorol., 76, 137–164 (1995).

    Google Scholar 

  • Zenman, O., N.O. Jensen: Modification of Turbulence Characteristics in Flow over Hills. Quart. J. Roy. Meteorol. Soc. 113, 55–80 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Emeis .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Emeis, S. (2018). Winds in Complex Terrain. In: Wind Energy Meteorology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-72859-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72859-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72858-2

  • Online ISBN: 978-3-319-72859-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics