Skip to main content

Alternatives to Detergents for Handling Membrane Proteins in Aqueous Solutions

  • Chapter
  • First Online:
Membrane Proteins in Aqueous Solutions

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1642 Accesses

Summary

Attempts at substituting detergents with other surfactants for handling membrane proteins (MPs) in aqueous solutions have a long history. They are based on three main incentives: (i) trying to improve the stability of solubilized MPs; (ii) providing them with an environment that, in its physical characteristics and/or its chemical composition, is closer to the natural environment; and (iii) making them accessible to technologies that are difficult or impossible to implement in the presence of detergents. A first route is to reinsert the protein in a lipid bilayer, most often closed upon itself in the form of lipid vesicles, sometimes forming a planar “black lipid membrane.” This approach is obligatory when functional assays require the protein to have access to two distinct aqueous compartments, but the objects formed are large, if not macroscopic, and do not lend themselves well to most biophysical investigations. A second route is to substitute totally or partially the detergent with other surfactants while forming water-soluble particles of nanometric dimensions. The use of specially developed amphipathic polymers called amphipols is one such approach, which will be described in detail in Chaps. 4 and 5 , but it is far from being the only one. In order to provide a broader view of which systems are available to the experimenter, the present chapter reviews the four principal alternatives to detergents and amphipols: (i) bicelles, which are mixtures of lipids and detergents or short-chain lipids that, under appropriate conditions, form disc-shaped bilayer fragments into which MPs can integrate; (ii) nanodiscs, whose basic concept is similar to that of bicelles, but in which the rim of the bilayer disc is stabilized by specially engineered proteins; (iii) peptides or lipopeptides, which can either interact directly with the MP to be solubilized or stabilize MP/lipid complexes; and (iv) fluorinated surfactants, which resemble detergents in their chemical structure but whose hydrophobic chains contain fluorine atoms, which make them lyophobic (poorly miscible with hydrocarbons); this renders them less disruptive of the protein/protein and protein/lipid interactions that stabilize MPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abla, M., Durand, G., Breyton, C., Raynal, S., Ebel, C., Pucci, B. (2012) A diglucosylated fluorinated surfactant to handle integral membrane proteins in aqueous solution. J. Fluor Chem. 134:63–71.

    Article  Google Scholar 

  • Abla, M., Durand, G., Pucci, B. (2008) Glucose-based surfactants with hydrogenated, fluorinated, or hemifluorinated tails: synthesis and comparative physical-chemical characterization. J. Org. Chem. 73:8142–8153.

    Article  Google Scholar 

  • Abla, M., Unger, S., Keller, S., Bonneté, F., Ebel, C., Pucci, B., Breyton, C., Durand, G. (2015) Micellar and biochemical properties of a propyl-ended fluorinated surfactant designed for membrane-protein study. J. Colloid Interface Sci. 445:127–136.

    Article  ADS  Google Scholar 

  • Agah, S., Faham, S. (2012) Crystallization of membrane proteins in bicelles. Methods Mol. Biol. 914:3–16.

    Google Scholar 

  • Ahn, V.E., Leyko, P., Alattia, J.-R., Chen, L., Privé, G.G. (2006) Crystal structures of saposins A and C. Protein Sci. 15:1849–1857.

    Article  Google Scholar 

  • Akkaladevi, N., Mukherjee, S., Katayama, H., Janowiak, B., Patel, D., Gogol, E.P., Pentelute, B.L., Collier, R.J., Fisher, M.T. (2015) Following Nature’s lead: On the construction of membrane-inserted toxins in lipid bilayer nanodiscs. J. Membr. Biol. 248:595–607.

    Article  Google Scholar 

  • Alvarez, F.J., Orelle, C., Huang, Y., Bajaj, R., Everly, R.M., Klug, C., Davidson, A.L. (2015) Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter. Mol. Microbiol. 98:878–894.

    Article  Google Scholar 

  • Anantharamaiah, G.M., Brouillette, C.G., Engler, J.A., De Loof, H., Venkatachalapathi, Y.V., Boogaerts, J., Segrest, J.P. (1990) Role of amphipathic helices in HDL structure/function. Adv. Exp. Med. Biol. 285:131–140.

    Article  Google Scholar 

  • Anantharamaiah, G.M., Jones, J.L., Brouillette, C.G., Schmidt, C.F., Chung, B.H., Hughes, T.A., Bhown, A.S., Segrest, J.P. (1985) Studies of synthetic peptide analogs of the amphipathic helix. Structure of complexes with dimyristoyl phosphatidylcholine. J. Biol. Chem. 260:10248–10255.

    Google Scholar 

  • Baas, B.J., Denisov, I.G., Sligar, S.G. (2004) Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch. Biochem. Biophys. 430:218–228.

    Article  Google Scholar 

  • Banerjee, S., Huber, T., Sakmar, T.P. (2008) Rapid incorporation of functional rhodopsin into nanoscale apolipoprotein-bound bilayer (NABB) particles. J. Mol. Biol. 377:1067–1081.

    Article  Google Scholar 

  • Barrett, P.J., Song, Y., Van Horn, W.D., Hustedt, E.J., Schafer, J.M., Hadziselimovic, A.H., Beel, A.J., Sanders, C.R. (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336:1168–1171.

    Article  ADS  Google Scholar 

  • Barthélémy, P., Améduri, B., Chabaud, E., Popot, J.-L., Pucci, B. (1999) Synthesis and preliminary assessment of ethyl-terminated perfluoroalkyl slowdown surfactants derived from tris(hydroxymethyl)acrylamidomethane. Org. Lett. 1:1689–1692.

    Article  Google Scholar 

  • Barthélémy, P., Tomao, V., Selb, J., Chaudier, Y., Pucci, B. (2002) Fluorocarbon-hydrocarbon non-ionic surfactant mixtures: a study of their miscibility. Langmuir 18:2557–2563.

    Article  Google Scholar 

  • Bavec, A., Juréus, A., Cigić, B., Langel, U., Zorko, M. (1999) Peptitergent PD1 affects the GTPase activity of rat brain cortical membranes. Peptides 20:177–184.

    Article  Google Scholar 

  • Bayburt, T.H., Carlson, J.W., Sligar, S.G. (1998) Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J. Struct. Biol. 123:37–44.

    Article  Google Scholar 

  • Bayburt, T.H., Grinkova, Y.V., Sligar, S.G. (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2:853–856.

    Article  ADS  Google Scholar 

  • Bayburt, T.H., Grinkova, Y.V., Sligar, S.G. (2006) Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs. Arch. Biochem. Biophys. 450:215–222.

    Article  Google Scholar 

  • Bayburt, T.H., Leitz, A.J., Xie, G., Oprian, D.D., Sligar, S.G. (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J. Biol. Chem. 282:14875–14881.

    Article  Google Scholar 

  • Bayburt, T.H., Sligar, S.G. (2002) Single-molecule height measurements on microsomal cytochrome P450 in nanometer-scale phospholipid bilayer disks. Proc. Natl. Acad. Sci. USA 99:6725–6730.

    Article  ADS  Google Scholar 

  • Bayburt, T.H., Sligar, S.G. (2010) Membrane protein assembly into nanodiscs. FEBS Lett. 584:1721–1727.

    Article  Google Scholar 

  • Bayburt, T.H., Vishnivetskiy, S.A., McLean, M.A., Morizumi, T., Huang, C.-C., Tesmer, J.J.G., Ernst, O.P., Sligar, S.G., Gurevich, V.V. (2011) Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J. Biol. Chem. 286:1420–1428.

    Article  Google Scholar 

  • Beaugrand, M., Arnold, A.A., Juneau, A., Balieiro Gambaro, A., Warschawski, D.E., Williamson, P.T.F., Marcotte, I. (2016) Magnetically oriented bicelles with monoalkylphosphocholines: versatile membrane mimetics for nuclear magnetic resonance applications. Langmuir 32:13244–13251.

    Article  Google Scholar 

  • Bibow, S., Polyhach, Y., Eichmann, C., Chi, C.N., Kowal, J., Albiez, S., McLeod, R.A., Stahlberg, H., Jeschke, G., Güntert, P., Riek, R. (2017) Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nat. Struct. Mol. Biol. 24:187–193.

    Article  Google Scholar 

  • Blesneac, I., Ravaud, S., Juillan-Binard, C., Barret, L.A., Zoonens, M., Polidori, A., Miroux, B., Pucci, B., Pebay-Peyroula, E. (2012) Production of UCP1, a membrane protein from the inner mitochondrial membrane, using the cell-free expression system in the presence of a fluorinated surfactant. Biochim. Biophys. Acta 1818:798–805.

    Article  Google Scholar 

  • Bocharov, E.V., Pustovalova, Y.E., Pavlov, K.V., Volynsky, P.E., Goncharuk, M.V., Ermolyuk, Y.S., Karpunin, D.V., Schulga, A.A., Kirpichnikov, M.P., Efremov, R.G., Maslennikov, I.V., Arseniev, A.S. (2007) Unique dimeric structure of BNip3 transmembrane domain suggests membrane permeabilization as a cell death trigger. J. Biol. Chem. 282:16256–16265.

    Article  Google Scholar 

  • Bocharov, E.V., Volynsky, P.E., Pavlov, K.V., Efremov, R.G., Arseniev, A.S. (2010) Structure elucidation of dimeric transmembrane domains of bitopic proteins. Cell Adh. Migr. 4:284–298.

    Article  Google Scholar 

  • Boldog, T., Grimme, S., Li, M., Sligar, S.G., Hazelbauer, G.L. (2006) Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. Proc. Natl. Acad. Sci. USA 103:11509–11514.

    Article  ADS  Google Scholar 

  • Borch, J., Hamann, T. (2009) The nanodisc: a novel tool for membrane protein studies. Biol. Chem. 390:805–814.

    Article  Google Scholar 

  • Breyton, C., Chabaud, E., Chaudier, Y., Pucci, B., Popot, J.-L. (2004) Hemifluorinated surfactants: a non-dissociating environment for handling membrane proteins in aqueous solutions? FEBS Lett. 564:312–318.

    Article  Google Scholar 

  • Breyton, C., Flayhan, A., Gabel, F., Lethier, M., Durand, G., Boulanger, P., Chamig, M., Ebel, C. (2013a) Assessing the conformation changes of pb5, the receptor binding protein of phage T5, upon binding to its E. coli receptor FhuA. J. Biol. Chem. 288:30763–30772.

    Article  Google Scholar 

  • Breyton, C., Gabel, F., Abla, M., Pierre, Y., Lebaupain, F., Durand, G., Popot, J.-L., Ebel, C., Pucci, B. (2009) Micellar and biochemical properties of (hemi)fluorinated surfactants are controlled by the size of the polar head. Biophys. J. 97:1077–1086.

    Article  ADS  Google Scholar 

  • Breyton, C., Gabel, F., Lethier, M., Flayhan, A., Durand, G., Jault, J.-M., Juillan-Binard, C., Imbert, Moulin, M., Ravaud S., Härtlein M., Ebel C. (2013b) Small angle neutron scattering for the study of solubilised membrane proteins. Eur. Phys. J. E 36:71–86.

    Article  Google Scholar 

  • Breyton, C., Pucci, B., Popot, J.-L. (2010) Amphipols and fluorinated surfactants: two alternatives to detergents for studying membrane proteins in vitro in: Mus-Veteau, I., ed., Heterologous expression of membrane proteins: Methods and protocols. The Humana Press, Totowa, New Jersey, USA, pp. 219–245.

    Chapter  Google Scholar 

  • Broecker, J., Eger, B.T., Ernst, O.P. (2017) Crystallogenesis of membrane proteins mediated by polymer-bounded lipid nanodiscs. Structure 25:384–392.

    Article  Google Scholar 

  • Brouillette, C.G., Anantharamaiah, G.M., Engler, J.A., Borhani, D.W. (2001) Structural models of human apolipoprotein A-I: a critical analysis and review. Biochim. Biophys. Acta 1531:4–46.

    Article  Google Scholar 

  • Cappuccio, J.A., Blanchette, C.D., Sulchek, T.A., Arroyo, E.S., Kralj, J.M., Hinz, A.K., Kuhn, E.A., Chromy, B.A., Segelke, B.W., Rothschild, K.J., Fletcher, J.E., Katzen, F., Peterson, T.C., Kudlicki, W.A., Bench, G., Hoeprich, P.D., Coleman, M.A. (2008) Cell-free co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles. Mol. Cell. Proteom. 7:2246–2253.

    Article  Google Scholar 

  • Carey, M.C., Small, D.M. (1972) Micelle formation by bile salts. Physical-chemical and thermodynamic considerations. Arch. Intern. Med. 130:506–527.

    Article  Google Scholar 

  • Carlson, J.W., Jonas, A., Sligar, S.G. (1997) Imaging and manipulation of high-density lipoproteins. Biophys. J. 73:1184–1189.

    Article  Google Scholar 

  • Casiraghi, M., Damian, M., Lescop, E., Point, E., Moncoq, K., Morellet, N., Levy, D., Marie, J., Guittet, E., Banères, J.-L., Catoire, L.J. (2016) Functional modulation of a GPCR conformational landscape in a lipid bilayer. J. Am. Chem. Soc. 138:11170–11175

    Article  Google Scholar 

  • Catoire, L.J., Damian, M., Giusti, F., Martin, A., van Heijenoort, C., Popot, J.-L., Guittet, E., Banères, J.-L. (2010) Structure of a GPCR ligand in its receptor-bound state: leukotriene B4 adopts a highly constrained conformation when associated to human BLT2. J. Am. Chem. Soc. 132:9049–9057.

    Article  Google Scholar 

  • Catoire, L.J., Warnet, X.L., Warschawski, D.E. (2014) Micelles, bicelles, amphipols, nanodiscs, liposomes or intact cells: The hitch-hiker guide to the study of membrane proteins by NMR, in: Mus-Veteau, I., ed., Membrane protein production for structural analysis. Springer, pp. 315–346.

    Google Scholar 

  • Catte, A., Patterson, J.C., Jones, M.K., Jerome, W.G., Bashtovyy, D., Su, Z., Gu, F., Chen, J., Aliste, M.P., Harvey, S.C., Li, L., Weinstein, G., Segrest, J.P. (2006) Novel changes in discoidal high density lipoprotein morphology: a molecular dynamics study. Biophys. J. 90:4345–4360.

    Article  ADS  Google Scholar 

  • Chabaud, E. (1997) Application des tensioactifs fluorés à la manipulation in vitro des protéines membranaires. Rapport de D.E.A., Université Paris-VI.

    Google Scholar 

  • Chabaud, E., Barthélémy, P., Mora, N., Popot, J.-L., Pucci, B. (1998) Stabilization of integral membrane proteins in aqueous solution using fluorinated surfactants. Biochimie 80:515–530.

    Article  Google Scholar 

  • Chaudier, Y., Barthélémy, P., Pucci, B. (2001) Synthesis and preliminary assessment of hybrid hydrocarbon-fluorocarbon anionic and non-ionic surfactants. Tetrahedron Lett. 42:3583–3585.

    Article  Google Scholar 

  • Chaudier, Y., Zito, F., Barthélémy, P., Stroebel, D., Améduri, B., Popot, J.-L., Pucci, B. (2002) Synthesis and preliminary biochemical assessment of ethyl-terminated perfluoroalkylamine oxide surfactants. Bioorg. Med. Chem. Lett. 12:1587–1590.

    Article  Google Scholar 

  • Cho, K.H., Byrne, B., Chae, P.S. (2013) Hemifluorinated maltose-neopentyl glycol (HF-MNG) amphiphiles for membrane protein stabilisation. ChemBioChem 14:452–455.

    Article  Google Scholar 

  • Chung, B.H., Anantharamaiah, G.M., Brouillette, C.G., Nishida, T., Segrest, J.P. (1985) Studies of synthetic peptide analogs of the amphipathic helix. Correlation of structure with function. J. Biol. Chem. 260:10256–10262.

    Google Scholar 

  • Chung, J., Prestegard, J.H. (1993) Characterization of field-ordered aqueous liquid crystals by NMR diffusion measurements. J. Phys. Chem. 97:9837–9843.

    Article  Google Scholar 

  • Civjan, N.R., Bayburt, T.H., Schuler, M.A., Sligar, S.G. (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. BioTechniques 35:556–560, 562–563.

    Google Scholar 

  • Corin, K., Baaske, P., Ravel, D.B., Song, J., Brown, E., Wang, X., Wienken, C.J., Jerabek-Willemsen, M., Duhr, S., Luo, Y., Braun, D., Zhang, S. (2011) Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems. PLoS ONE 6:e25067.

    Article  ADS  Google Scholar 

  • Cui, T.X., Canlas, C.G., Xu, Y., Tang, P. (2010) Anesthetic effects on the structure and dynamics of the second transmembrane domains of nAChR α4β2. Biochim. Biophys. Acta 1798:161–166.

    Article  Google Scholar 

  • Czerski, L., Sanders, C.R. (2000) Functionality of a membrane protein in bicelles. Anal. Biochem. 284:327–333.

    Article  Google Scholar 

  • Daury, L., Orange, F., Taveau, J.-C., Verchère, A., Monlezun, L., Gounou, C., Marreddy, R.K.R., Picard, M., Broutin, I., Pos, K.M., Lambert, O. (2016) Tripartite assembly of RND multidrug efflux pumps. Nat. Commun. 7:10731.

    Article  ADS  Google Scholar 

  • Dauvergne, J., Polidori, A., Vénien-Bryan, C., Pucci, B. (2008) Synthesis of a hemifluorinated amphiphile designed for self-assembly and two-dimensional crystallization of membrane proteins. Tet. Lett. 49:2247–2250.

    Article  Google Scholar 

  • De Angelis, A., Nevzorov, A., Park, S.H., Howell, S.C., Mrse, A.A., Opella, S.J. (2004) High-resolution NMR spectroscopy of membrane proteins in “aligned” bicelles. J. Am. Chem. Soc. 126:15340–15341.

    Article  Google Scholar 

  • De Angelis, A.A., Opella, S.J. (2007) Bicelle samples for solid-state NMR of membrane proteins. Nat. Protoc. 2:2332–2338.

    Article  Google Scholar 

  • Debnath, A., Schäfer, L.V. (2015) Structure and dynamics of phospholipid nanodiscs from all-atom and coarse-grained simulations. J. Phys. Chem. B 119:6991–7002.

    Article  Google Scholar 

  • Dempsey, C.E., Sternberg, B. (1991) Reversible disc-micellization of dimyristoylphosphatidylcholine bilayers induced by melittin and [Ala-14]melittin. Biochim. Biophys. Acta 1061:175–184.

    Article  Google Scholar 

  • Denisov, I.G., Baas, B.J., Grinkova, Y.V., Sligar, S.G. (2007) Cooperativity in cytochrome P450 3A4: linkages in substrate binding, spin state, uncoupling, and product formation. J. Biol. Chem. 282:7066–7076.

    Article  Google Scholar 

  • Denisov, I.G., Grinkova, Y.V., Lazarides, A.A., Sligar, S.G. (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J. Am. Chem. Soc. 126:3477–3487.

    Article  Google Scholar 

  • Denisov, I.G., McLean, M.A., Shaw, A.W., Grinkova, Y.V., Sligar, S.G. (2005) Thermotropic phase transitions in soluble nanoscale lipid bilayers. J. Phys. Chem. B. 109:15580–15588.

    Article  Google Scholar 

  • Denisov, I.G., Sligar, S.G. (2016) Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 23:481–486.

    Article  Google Scholar 

  • Denisov, I.G., Sligar, S.G. (2017) Nanodiscs in membrane biochemistry and biophysics. Chem. Rev. 117:4669–4713.

    Article  Google Scholar 

  • Der Mardirossian, C., Krafft, M.-P., Gulik-Krzywicki, T., le Maire, M., Lederer, F. (1998) On the lack of protein-solubilizing properties of two perfluoroalkylated detergents, as tested with neutrophil plasma membranes. Biochimie 80:531–541.

    Article  Google Scholar 

  • Duan, H., Civjan, N.R., Sligar, S.G., Schuler, M.A. (2004) Co-incorporation of heterologously expressed Arabidopsis cytochrome P450 and P450 reductase into soluble nanoscale lipid bilayers. Arch. Biochem. Biophys. 424:141–153.

    Article  Google Scholar 

  • Durand, G., Abla, M., Ebel, C., Breyton, C. (2014) New amphiphiles to handle membrane proteins: “Ménage à Trois” between chemistry, physical chemistry, and biochemistry, in: Mus-Veteau, I., ed., Membrane Proteins Production for Structural Analysis. Springer, New York, Heidelberg, Dordrecht, London, pp. 205–251.

    Google Scholar 

  • Durbin, D.M., Jonas, A. (1997) The effect of apolipoprotein A-II on the structure and function of apolipoprotein A-I in a homogeneous reconstituted high density lipoprotein particle. J. Biol. Chem. 272:31333–31339.

    Article  Google Scholar 

  • Dürr, U.H., Gildenberg, M., Ramamoorthy, A. (2012) The magic of bicelles lights up membrane protein structure. Chem. Rev. 112:6054–6074.

    Article  Google Scholar 

  • Dürr, U.H.N., Soong, R., Ramamoorthy, A. (2013) When detergent meets bilayer: Birth and coming of age of lipid bicelles. Prog. Nucl. Magn. Reson. Spectrosc. 69:1–22.

    Article  Google Scholar 

  • Efremov, R.G., Baradaran, R., Sazanov, L.A. (2010) The architecture of respiratory complex I. Nature 465:441–445.

    Article  ADS  Google Scholar 

  • Efremov, R.G., Leitner, A., Aebersold, R., Raunser, S. (2015) Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517:39–43.

    Article  ADS  Google Scholar 

  • Eichmann, C., Bibow, S., Riek, R. (2017) α-Synuclein lipoprotein nanoparticles. Nanotech. Rev. 6:105–110.

    Google Scholar 

  • Eichmann, C., Campioni, S., Kowal, J., Maslennikov, I., Gerez, J., Liu, X., Verasdonck, J., Nespovitaya, N., Choe, S., Meier, B.H., Picotti, P., Rizo, J., Stahlberg, H., Riek, R. (2016) Preparation and characterization of stable α-synuclein lipoprotein particles. J. Biol. Chem. 291:8516–8527.

    Article  Google Scholar 

  • Elter, S., Raschle, T., Arens, S., Viegas, A., Gelev, V., Etzkorn, M., Wagner, G. (2014) The use of amphipols for NMR structural characterization of 7-TM proteins. J. Membr. Biol. 247:957–964.

    Article  Google Scholar 

  • Etzkorn, M., Raschle, T., Hagn, F., Gelev, V., Rice, A.J., Walz, T., Wagner, G. (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21:394–401.

    Article  Google Scholar 

  • Faham, S., Boulting, G.L., Massey, E.A., Yohannan, S., Yang, D., Bowie, J.U. (2005) Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci. 14:836–840.

    Article  Google Scholar 

  • Faham, S., Bowie, J.U. (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J. Mol. Biol. 316:1–6.

    Article  Google Scholar 

  • Fanucci, G.E., Lee, J.Y., Cafiso, D.S. (2003) Membrane mimetic environments alter the conformation of the outer membrane protein BtuB. J. Am. Chem. Soc. 125:13932–13933.

    Article  Google Scholar 

  • Flayhan, A., Mertens, H.D.T., Ural-Blimke, Y., Molledo, M.M., Svergun, D.I., Loew, C. (2018) Saposin lipid nanoparticles: A highly versatile and modular tool for membrane protein research. Structure 26:345–355.e345.

    Article  Google Scholar 

  • Forrest, B.J., Reeves, L.W. (1981) New lyotropic liquid crystals composed of finite nonspherical micelles. Chem. Rev. 81:1–14.

    Article  Google Scholar 

  • Fotinou, C., Aittoniemi, J., de Wet, H., Polidori, A., Pucci, B., Sansom, M.S.P., Vénien-Bryan, C., Ashcroft, F.M. (2013) Tetrameric structure of SUR2B revealed by electron microscopy of oriented single particles. FEBS J. 280:1051–1063.

    Article  Google Scholar 

  • Frauenfeld, J., Gumbart, J., van der Sluis, E.O., Funes, S., Gartmann, M., Beatrix, B., Mielke, T., Berninghausen, O., Becker, T., Schulten, K., Beckmann, R. (2011) Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nat. Struct. Mol. Biol. 18:614–621.

    Article  Google Scholar 

  • Frauenfeld, J., Löving, R., Armache, J.-P., Sonnen, A.F.-P., Guettou, F., Moberg, P., Zhu, L., Jegerschöld, C., Flayhan, A., Briggs, J.A.G., Garoff, H., Löw, C., Cheng, Y., Nordlund, P. (2016) A saposin-lipoprotein nanoparticle system for membrane proteins. Nat. Meth. 13:345–351.

    Article  Google Scholar 

  • Frey, L., Lakomek, N.-A., Riek, R., Bibow, S. (2017) Micelles, bicelles, and nanodiscs: Comparing the impact of membrane mimetics on membrane protein backbone dynamics. Angew. Chem. Int. Ed. 56:380–383.

    Article  Google Scholar 

  • Frotscher, E., Danielczak, B., Vargas, C., Meister, A., Durand, G., Keller, S. (2015) A fluorinated detergent for membrane-protein applications. Angew. Chem. Int. Ed. 17:5069–5073.

    Article  Google Scholar 

  • Früh, V., IJzerman, A.P., Siegal, G. (2011) How to catch a membrane protein in action: a review of functional membrane protein immobilization strategies and their applications. Chem. Rev. 111:640–656.

    Article  Google Scholar 

  • Gao, T., Petrlova, J., He, W., Huser, T., Kudlick, W., Voss, J., Coleman, M.A. (2012) Characterization of de novo synthesized GPCRs supported in nanolipoprotein discs. PLoS ONE 7:e44911.

    Article  ADS  Google Scholar 

  • Gao, Y., Cao, E., Julius, D., Cheng, Y. (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:347–351.

    Article  ADS  Google Scholar 

  • Gatsogiannis, C., Merino, F., Prumbaum, D., Roderer, D., Leidreiter, F., Meusch, D., Raunser, S. (2016) Membrane insertion of a Tc toxin in near-atomic detail. Nat. Struct. Mol. Biol. 23:884–890.

    Article  Google Scholar 

  • Gautier, A., Mott, H.R., Bostock, M.J., Kirkpatrick, J.P., Nietlispach, D. (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat. Struct. Mol. Biol. 17:768–774.

    Article  Google Scholar 

  • Georgieva, E.R. (2017) Nanoscale lipid membrane mimetics in spin-labeling and electron paramagnetic resonance spectroscopy studies of protein structure and function. Nanotech. Rev. 6:75–92.

    Google Scholar 

  • Ghimire, H., Abu-Baker, S., Sahu, I.D., Zhou, A., Mayo, D.J., Lee, R.T., Lorigan, G.A. (2011) Probing the helical tilt and dynamic properties of membrane-bound phospholamban in magnetically aligned bicelles using electron paramagnetic resonance spectroscopy. Biochim. Biophys. Acta 1818:645–650.

    Article  Google Scholar 

  • Gillette, W.K., Esposito, D., Abreu Blanco, M., Alexander, P., Bindu, L., Bittner, C., Chertov, O., Frank, P.H., Grose, C., Jones, J.E., Meng, Z., Perkins, S., Van, Q., Ghirlando, R., Fivash, M., Nissley, D.V., McCormick, F., Holderfield, M., Stephen, A.G. (2015) Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions. Sci. Rep. 5:15916.

    Article  ADS  Google Scholar 

  • Goddard, A.D., Dijkman, P.M., Adamson, R.J., Inácio dos Reis, R., Watts, A. (2015) Reconstitution of membrane proteins: A GPCR as an example. Meth. Enzymol. 556:405–424.

    Article  Google Scholar 

  • Gogol, E.P., Akkaladevi, N., Szerszen, L., Mukherjee, S., Chollet-Hinton, L., Katayama, H., Pentelute, B.L., Collier, R.J., Fisher, M.T. (2013) Three dimensional structure of the anthrax toxin translocon-lethal factor complex by cryo-electron microscopy. Prot. Sci. 22:586–594.

    Article  Google Scholar 

  • Gogonea, V. (2016) Structural insights into high-density lipoprotein: Old models and new facts. Front. Pharmacol. 6:1–30.

    Article  Google Scholar 

  • Gogonea, V., Gerstenecker, G.S., Wu, Z., Lee, X., Topbas, C., Wagner, M.A., Tallant, T.C., Smith, J.D., Callow, P., Pipich, V., Malet, H., Schoehn, G., DiDonato, J.A., Hazen, S.L. (2013) The low-resolution structure of nHDL reconstituted with DMPC with and without cholesterol reveals a mechanism for particle expansion. J. Lipid Res. 54:966–983.

    Article  Google Scholar 

  • Gregersen, J.L., Fedosova, N.U., Nissen, P., Boesen, T. (2016) Reconstitution of Na+,K+-ATPase in nanodiscs. Methods Mol. Biol. 1377:403–409.

    Google Scholar 

  • Grigorieff, N., Ceska, T.A., Downing, K.H., Baldwin, J.M., Henderson, R. (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259:393–421.

    Article  Google Scholar 

  • Grinkova, Y.V., Denisov, I.G., Sligar, S.G. (2010) Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng. Des. Sel. 23:843–848.

    Article  Google Scholar 

  • Gruene, T., Cho, M.-K., Karyagina, I., Kim, H.-Y., Grosse, C., Giller, K., Zweckstetter, M., Becker, S. (2011) Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy. J. Biomol. NMR 49:111–119.

    Article  Google Scholar 

  • Grushin, K., Miller, J., Dalm, D., Stoilova-McPhie, S. (2015) Factor VIII organisation on nanodiscs with different lipid composition. Thromb. Haemost. 113:741–749.

    Article  Google Scholar 

  • Gustavsson, M., Traaseth, N.J., Veglia, G. (2012) Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy. Biochim. Biophys. Acta 1818:146–153.

    Article  Google Scholar 

  • Hagn, F., Etzkorn, M., Raschle, T., Wagner, G. (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J. Am. Chem. Soc. 135:1919–1925.

    Article  Google Scholar 

  • Hagn, F., Wagner, G. (2015) Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs. J. Biomol. NMR 61:249–260.

    Article  Google Scholar 

  • Han, S.G., Na, J.H., Lee, W.K., Park, D., Oh, J., Yoon, S.H., Lee, C.K., Sung, M.H., Shin, Y.K., Yu, Y.G. (2014) An amphipathic polypeptide derived from poly-γ-glutamic acid for the stabilization of membrane proteins. Prot. Sci. 23:1800–1807.

    Article  Google Scholar 

  • Hansen, R.W., Wang, X., Golab, A., Bornert, O., Oswald, C., Wagner, R., Martinez, K.L. (2016) Functional stability of the human κ-opioid receptor reconstituted in nanodiscs revealed by a time-resolved scintillation proximity assay. PLoS ONE 11:e0150658.

    Article  Google Scholar 

  • Harroun, T.A., Koslowsky, M., Nieh, M.P., de Lannoy, C.F., Raghunathan, V.A., Katsaras, J. (2005) Comprehensive examination of mesophases formed by DMPC and DHPC mixtures. Langmuir 21:5356–5361.

    Article  Google Scholar 

  • Held, P., Lach, F., Lebeau, L., Mioskowski, C. (1997) Synthesis and preliminary evaluation of a new class of fluorinated amphiphiles designed for in-plane immobilisation of biological macromolecules. Tetrahedron Lett. 38:1937–1940.

    Article  Google Scholar 

  • Henrich, E., Dötsch, V., Bernhard, F. (2015) Screening for lipid requirements of membrane proteins by combining cell-free expression with nanodiscs. Meth. Enzymol. 556:351–369.

    Article  Google Scholar 

  • Henrich, E., Ma, Y., Engels, I., Münch, D., Otten, C., Schneider, T., Henrichfreise, B., Sahl, H.G., Dötsch, V., Bernhard, F. (2016) Lipid requirements for the enzymatic activity of MraY translocases and in vitro reconstitution of Lipid II synthesis pathway. J. Biol. Chem. 291:2535–2546.

    Article  Google Scholar 

  • Henrich, E., Peetz, O., Hein, C., LaGuerre, A., Hoffmann, B., Hoffmann, J., Dötsch, V., Bernhard, F., Morgner, N. (2017) Analyzing native membrane protein assembly in nanodiscs by combined non-covalent mass spectrometry and synthetic biology. eLife 6:e20954.

    Article  Google Scholar 

  • Ho, D.N., Pomroy, N.C., Cuesta-Seijo, J.A., Privé, G.G. (2008) Crystal structure of a self-assembling lipopeptide detergent at 1.20 Å. Proc. Natl. Acad. Sci. USA 105:12861–12866.

    Article  ADS  Google Scholar 

  • Hopper, J.T.S., Yu, Y.T.-C., Li, D., Raymond, A., Bostock, M., Liko, I., Mikhailov, V., Laganowsky, A., Benesch, J.L.P., Caffrey, M., Nietlispach, D., Robinson, C.V. (2013) Detergent-free mass spectrometry of membrane protein complexes. Nat. Meth. 10:1206–1208.

    Article  Google Scholar 

  • Howell, S.C., Mesleh, M.F., Opella, S.J. (2005) NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system. Biochemistry 44:5196–5206.

    Article  Google Scholar 

  • Imura, T., Tsukui, Y., Sakai, K., Sakai, H., Taira, T., Kitamoto, D. (2014a) Minimum amino acid residues of an α-helical peptide leading to lipid nanodisc formation. J. Oleo Sci. 63:1203–1208.

    Article  Google Scholar 

  • Imura, T., Tsukui, Y., Taira, T., Aburai, K., Sakai, K., Sakai, H., Abe, M., Kitamoto, D. (2014b) Surfactant-like properties of an amphiphilic α-helical peptide leading to lipid nanodisc formation. Langmuir 30:4752–4759.

    Article  Google Scholar 

  • Inagaki, S., Ghirlando, R. (2017) Nanodisc characterization by analytical ultracentrifugation. Nanotech. Rev. 6:3–14.

    Google Scholar 

  • Israelachvili, J.N. (2011) Intermolecular and surface forces, 3rd edition. Academic Press, London, 706 p.

    Google Scholar 

  • Israelachvili, J.N., Mitchell, D.J., Ninham, B.W. (1977) Theory of self-assembly of lipid bilayers and vesicles. Biochim. Biophys. Acta 470:185–201.

    Article  Google Scholar 

  • Johansson, L.C., Wöhri, A.B., Katona, G., Engström, S., Neutze, R. (2009) Membrane protein crystallization from lipidic phases. Curr. Opin. Struct. Biol. 19:372–378.

    Article  Google Scholar 

  • Johnson, P.J., Halpin, A., Morizumi, T., Brown, L.S., Prokhorenko, V.I., Ernst, O.P., Dwayne Miller, R.J. (2014) The photocycle and ultrafast vibrational dynamics of bacteriorhodopsin in lipid nanodiscs. Phys. Chem. Chem. Phys. 16:21310–21320

    Article  Google Scholar 

  • Johnson, Z.L., Chen, J. (2017) Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168:1075–1085.

    Article  Google Scholar 

  • Jonas, A. (1986) Reconstitution of high-density lipoproteins. Methods Enzymol. 128:553–582.

    Article  Google Scholar 

  • Jonas, A., Kezdy, K.E., Wald, J.H. (1989) Defined apolipoprotein A-I conformations in reconstituted high-density lipoprotein discs. J. Biol. Chem. 264:4818–4824.

    Google Scholar 

  • Jonas, A., von Eckardstein, A., Kézdy, K.E., Steinmetz, A., Assmann, G. (1991) Structural and functional properties of reconstituted high-density lipoprotein discs prepared with six apolipoprotein A-I variants. J. Lipid Res. 32:97–106.

    Google Scholar 

  • Jonas, A., Wald, J.H., Toohill, K.L., Krul, E.S., Kézdy, K.E. (1990) Apolipoprotein A-I structure and lipid properties in homogeneous, reconstituted spherical and discoidal high density lipoproteins. J. Biol. Chem. 265:22123–22129.

    Google Scholar 

  • Joubert, O., Nehmé, R., Bidet, M., Mus-Veteau, I. (2010) Heterologous expression of human membrane receptors in the yeast Saccharomyces cerevisiae, in: Mus-Veteau, I., ed., Heterologous expression of membrane proteins. Humana Press, New York, pp. 87–103.

    Chapter  Google Scholar 

  • Kang, C., Vanoye, C.G., Welch, R.C., Van Horn, W.D., Sanders, C.R. (2010) Functional delivery of a membrane protein into oocyte membranes using bicelles. Biochemistry 49:653–655.

    Article  Google Scholar 

  • Kang, Y., Zhou, X.E., Gao, X., He, Y., Liu, W., Ishchenko, A., Barty, A., White, T.A., Yefanov, O., Han, G.W., Xu, Q., deWaal, P.W., Ke, J., Tan, M.H.E., Zhang, C., Moeller, A., West, G.M., Pascal, B.D., Van Eps, N., Caro, L.N., Vishnivetskiy, S.A., Lee, R.J., Suino-Powell, K.M., Gu, X., Pal, K., Ma, J., Zhi, X., Boutet, S., Williams, G.J., Messerschmidt, M., Gati, C., Zatsepin, N.A., Wang, D., James, D., Basu, S., Roy-Chowdhury, S., Conrad, C.E., Coe, J., Liu, H., Lisova, S., Kupitz, C., Grotjohann, I., Fromme, R., Jiang, Y., Tan, M., Yang, H., Li, J., Wang, M., Zheng, Z., Li, D., Howe, N., Zhao, Y., Standfuss, J., Diederichs, K., Dong, Y., Potter, C.S., Carragher, B., Caffrey, M., Jiang, H., Chapman, H.N., Spence, J.C.H., Fromme, P., Weierstall, U., Ernst, O.P., Katritch, V., Gurevich, V.V., Griffin, P.R., Hubbell, W.L., Stevens, R.C., Cherezov, V., Melcher, K., Xu, E. (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567.

    Article  ADS  Google Scholar 

  • Kariyazono, H., Nadai, R., Miyajima, R., Takechi-Haraya, Y., Baba, T., Shigenaga, A., Okuhira, K., Otaka, A., Saito, H. (2016) Formation of stable nanodiscs by bihelical apolipoprotein A-I mimetic peptide. J. Pept. Sci. 22:116–122.

    Article  Google Scholar 

  • Katayama, H., Wang, J., Tama, F., Chollet, L., Gogol, E.P., Collier, R.J., Fisher, M.T. (2010) Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles. Proc. Natl. Acad. Sci. USA 107:3453–3457.

    Article  ADS  Google Scholar 

  • Katzen, F., Fletcher, J.E., Yang, J.P., Kang, D., Peterson, T.C., Cappuccio, J.A., Blanchette, C.D., Sulchek, T., Chromy, B.A., Hoeprich, P.D., Coleman, M.A., Kudlicki, W. (2008) Insertion of membrane proteins into discoidal membranes using a cell-free protein expression approach. J. Proteome Res. 7:3535–3542.

    Article  Google Scholar 

  • Kedrov, A., Wickles, S., Crevenna, A.H., van der Sluis, E.O., Buschauer, R., Berninghausen, O., Lamb, D.C., Beckmann, R. (2016) Structural dynamics of the YidC:ribosome complex during membrane protein biogenesis. Cell Rep. 17:2934–2954.

    Article  Google Scholar 

  • Kelly, E., Privé, G.G., Tieleman, P.D. (2005) Molecular models of lipopeptide detergents: large coiled-coils with hydrocarbon interiors. J. Am. Chem. Soc. 127:13446–13447.

    Article  Google Scholar 

  • Kennedy, G.L., Butenhoff, J.L., Olsen, G.W., O’Connor, J.C., Seacat, A.M., Perkins, R.G., Biegel, L.B., Murphy, S.R., Farrar, D.G. (2004) The toxicology of perfluorooctanoate. Crit. Rev. Toxicol. 34:351–384.

    Article  Google Scholar 

  • Ketchem, R., Hu, W., Cross, T.A. (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid state NMR. Science 261:1457–1460.

    Article  ADS  Google Scholar 

  • Kijac, A., Shih, A.Y., Nieuwkoop, A.J., Schulten, K., Sligar, S.G., Rienstra, C.M. (2010) Lipid-protein correlations in nanoscale phospholipid bilayers determined by solid-state nuclear magnetic resonance. Biochemistry 49:9190–9198.

    Article  Google Scholar 

  • Kijac, A.Z., Li, Y., Sligar, S.G., Rienstra, C.M. (2007) Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46:13696–13703.

    Article  Google Scholar 

  • Kiley, P., Zhao, X., Vaughn, M., Baldo, M.A., Bruce, B.D., Zhang, S. (2005) Self-assembling peptide detergents stabilize isolated Photosystem I on a dry surface for an extended time. PLoS Biol. 3:e230.

    Article  Google Scholar 

  • Kim, H.M., Howell, S.C., Van Horn, W.D., Jeon, Y.H., Sanders, C.R. (2009) Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Progr. Nucl. Magn. Reson. Spectrosc. 55:335–360.

    Article  Google Scholar 

  • Kirsch, P. (2004) Modern fluoroorganic chemistry: synthesis, reactivity, applications. Wiley-VCH, Weinheim, 308 p.

    Book  Google Scholar 

  • Kissa, E. (1994) Structure of micelles and mesophases, in: Kissa, E., ed., Fluorinated Surfactants: Synthesis, Properties, Applications. Marcel Dekker, Inc., New York, pp. 264–282.

    Google Scholar 

  • Kissa, E. (2001) Fluorinated Surfactants and Repellents, 2nd ed.. Marcel Dekker, New York, 615 p.

    Google Scholar 

  • Koch, S., de Wit, J.G., Vos, I., Birkner, J.P., Gordiichuk, P., Herrmann, A., van Oijen, A.M., Driessen, A.J. (2016) Lipids activate SecA for high affinity binding to the SecYEG complex. J. Biol. Chem. 291:22534–22543.

    Article  Google Scholar 

  • Kolter, T., Sandhoff, K. (2005) Principles of lysosomal membrane digestion: Stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids. Annu. Rev. Cell Dev. Biol. 21:81–103.

    Article  Google Scholar 

  • Kondo, H., Ikeda, K., Nakano, M. (2016) Formation of size-controlled, denaturation-resistant lipid nanodiscs by an amphiphilic self-polymerizing peptide. Colloids Surf. B 146:423–430.

    Article  Google Scholar 

  • Koppaka, V., Silvestro, L., Engler, J.A., Brouillette, C.G., Axelsen, P.H. (1999) The structure of human lipoprotein A-I. Evidence for the “belt” model. J. Biol. Chem. 274:14541–14544.

    Article  Google Scholar 

  • Koutsopoulos, S., Kaiser, L., Eriksson, H.M., Zhang, S. (2012) Designer peptide surfactants stabilize diverse functional membrane proteins. Chem. Soc. Rev. 41:1721–1728.

    Article  Google Scholar 

  • Kraft, T.E., Hresko, R.C., Hruz, P.W. (2015) Expression, purification, and functional characterization of the insulin-responsive facilitative glucose transporter GLUT4. Protein Sci. 24:2008–2019.

    Article  Google Scholar 

  • Kreutz, J.E., Li, L., Roach, L.S., Hatakeyama, T., Ismagilov, R.F., Rustem, F. (2009) Laterally mobile, functionalized self-assembled monolayers at the fluorous-aqueous interface in a plug-based microfluidic system: Characterization and testing with membrane protein crystallization. J. Am. Chem. Soc. 131:6042–6043.

    Article  Google Scholar 

  • Kucharska, I., Edrington, T.C., Liang, B., Tamm, L.K. (2015) Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins. J. Biomol. NMR 61:261–274.

    Article  Google Scholar 

  • Kumar, R.B., Zhu, L., Idborg, H., Radmark, O., Jakobsson, P., Rinaldo-Matthis, A., Hebert, H., Jegerschold, C. (2016) Structural and functional analysis of calcium ion mediated binding of 5-lipoxygenase to nanodiscs. PLoS One 11:e0152116.

    Article  Google Scholar 

  • Kuszak, A.J., Pitchiaya, S., Anand, J.P., Mosberg, H.I., Walter, N.G., Sunahara, R.K. (2009) Purification and functional reconstitution of monomeric μ-opioid receptors: Allosteric modulation of agonist binding by Gi2. J. Biol. Chem. 284:26732–26741.

    Article  Google Scholar 

  • Kyrychenko, A., Rodnin, M.V., Posokhov, Y.O., Holt, A., Pucci, B., Killian, J.A., Ladokhin, A.S. (2012a) Thermodynamic measurements of bilayer insertion of a single transmembrane helix chaperoned by fluorinated surfactants. J. Mol. Biol. 416:328–334.

    Article  Google Scholar 

  • Kyrychenko, A., Rodnin, M.V., Vargas, M.U., Sharma, S.K., Durand, G., Pucci, B., Popot, J.-L., Ladokhin, A.S. (2012b) Folding of diphteria toxin T-domain in the presence of amphipols and fluorinated surfactants: Toward thermodynamic measurements of membrane protein folding. Biochim. Biophys. Acta 1818:1006–1012.

    Article  Google Scholar 

  • Lai, G., Forti, K.M., Renthal, R. (2015) Kinetics of lipid mixing between bicelles and nanolipoprotein particles. Biophys. J. 197:47–52.

    Google Scholar 

  • Lamichhane, R., Liu, J.J., Pljevaljcic, G., White, K.L., van der Schans, E., Katritch, V., Stevens, R.C., Wüthrich, K., Millar, D.P. (2015) Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β2AR. Proc. Natl. Acad. Sci. USA 112:14254–14259.

    Article  ADS  Google Scholar 

  • Landreh, M., Robinson, C.V. (2015) A new window into the molecular physiology of membrane proteins. J. Physiol. 593:355–362.

    Article  Google Scholar 

  • Larsen, A.N., Sorensen, K.K., Johansen, N.T., Martel, A., Kirkensgaard, J.J., Jensen, K.J., Arleth, L., Midtgaard, S.R. (2016) Dimeric peptides with three different linkers self-assemble with phospholipids to form peptide nanodiscs that stabilize membrane proteins. Soft Matter 12:5937–5949.

    Article  ADS  Google Scholar 

  • Lau, T.L., Partridge, A.W., Ginsberg, M.H., Ulmer, T.S. (2008) Structure of the integrin β3 transmembrane segment in phospholipid bicelles and detergent micelles. Biochemistry 47:4008–4016.

    Article  Google Scholar 

  • Laursen, T., Singha, A., Rantzau, N., Tutkus, M., Borch, J., Hedegård, P., Stamou, D., Møller, B.L., Hatzakis, N.S. (2014) Single molecule activity measurements of cytochrome P450 oxidoreductase reveal the existence of two discrete functional states. ACS Chem. Biol. 9:630–634.

    Article  Google Scholar 

  • Lebaupain, F. (2007) Développement de l’utilisation des tensioactifs fluorés pour la biochimie des protéines membranaires. Thèse de Doctorat, Université Paris-7, Paris, 254 p.

    Google Scholar 

  • Lebaupain, F., Salvay, A.G., Olivier, B., Durand, G., Fabiano, A.-S., Michel, N., Popot, J.-L., Ebel, C., Breyton, C., Pucci, B. (2006) Lactobionamide surfactants with hydrogenated, hemifluorinated or perfluorinated tails: Physical-chemical and biochemical characterization. Langmuir 22:8881–8890.

    Article  Google Scholar 

  • Lebeau, L., Lach, F., Venien-Bryan, C., Renault, A., Dietrich, J., Jahn, T., Palmgren, M.G., Kühlbrandt, W., Mioskowski, C. (2001) Two-dimensional crystallization of a membrane protein on a detergent-resistant lipid monolayer. J. Mol. Biol. 308:639–647.

    Article  Google Scholar 

  • Lee, D., Walter, K.F., Brückner, A.K., Hilty, C., Becker, S., Griesinger, C. (2008) Bilayer in small bicelles revealed by lipid-protein interactions using NMR spectroscopy. J. Am. Chem. Soc. 130:13822–13823.

    Article  Google Scholar 

  • Lee, H., Shingler, K.L., Organtini, L.J., Ashley, R.E., Makhov, A.M., Conway, J.F., Hafenstein, S. (2016) The novel asymmetric entry intermediate of a picornavirus captured with nanodiscs. Sci. Adv. 2:e1501929.

    Article  ADS  Google Scholar 

  • Legrand, F., Breyton, C., Guillet, P., Ebel, C., Durand, G. (2016) Hybrid fluorinated and hydrogenated double-chain surfactants for handling membrane proteins. J. Org. Chem. 81:681–688.

    Article  Google Scholar 

  • Leney, A.C., Rezaei Darestani, R., Li, J., Nikjah, S., Kitova, E.N., Zou, C., Cairo, C.W., Xiong, Z.J., Privé, G.G., Klassen, J.S. (2015) Picodiscs for facile protein-glycolipid interaction analysis. Anal. Chem. 87:4402–4408.

    Article  Google Scholar 

  • Lewis, B.A., Engelman, D.M. (1983) Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166:211–217.

    Article  Google Scholar 

  • Li, J., Fan, X., Kitova, E.N., Zou, C., Cairo, C.W., Eugenio, L., Ng, K.K.S., Xiong, Z.J., Privé, G.G., Klassen, J.S. (2016a) Screening glycolipids against proteins in vitro using picodiscs and catch-and-release electrospray ionization-mass spectrometry. Anal. Chem. 88:4742–4750.

    Article  Google Scholar 

  • Li, J., Richards, M.R., Bagal, D., Campuzano, I.D.G., Kitova, E.N., Xiong, Z.J., Privé, G.G., Klassen, J.S. (2016b) Characterizing the size and composition of saposin A lipoprotein picodiscs. Anal. Chem. 88:9524–9531.

    Article  Google Scholar 

  • Li, L., Chen, J., Mishra, V.K., Kurtz, J.A., Cao, D., Klon, A.E., Harvey, S.C., Anantharamaiah, G.M., Segrest, J.P. (2004) Double belt structure of discoidal high density lipoproteins: molecular basis for size heterogeneity. J. Mol. Biol. 343:1293–1311.

    Article  Google Scholar 

  • Li, Y., Kijac, A.Z., Sligar, S.G., Rienstra, C.M. (2006) Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy. Biophys. J. 91:3819–3828.

    Article  ADS  Google Scholar 

  • Liebau, J., Ye, W., Mäler, L. (2016) Characterization of fast-tumbling isotropic bicelles by PFG diffusion NMR. Magn. Reson. Chem. 55:395–404.

    Article  Google Scholar 

  • Lindberg, M., Biverståhl, H., Gräslund, A., Mäler, L. (2003) Structure and positioning comparison of two variants of penetratin in two different membrane mimicking systems by NMR. Eur. J. Biochem. 270:3055–3063.

    Article  Google Scholar 

  • Loll, P.J. (2014) Membrane proteins, detergents and crystals: what is the state of the art? Acta Crystallogr. F 70:1576–1583.

    Article  Google Scholar 

  • Luecke, H., Schobert, B., Stagno, J., Imasheva, E.S., Wang, J.M., Balashov, S.P., Lanyi, J.K. (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl. Acad. Sci. USA 105:16561–16565.

    Article  ADS  Google Scholar 

  • Lyukmanova, E.N., Shenkarev, Z.O., Khabibullina, N.F., Kopeina, G.S., Shulepko, M.A., Paramonov, A.S., Mineev, K.S., Tikhonov, R.V., Shingarova, L.N., Petrovskaya, L.E., Dolgikh, D.A., Arseniev, A.S., Kirpichnikov, M.P. (2011) Lipid-protein nanodisks for cell-free production of integral membrane proteins in a soluble and folded state: Comparison with detergent micelles, bicelles and liposomes. Biochim. Biophys. Acta 1818:349–358.

    Article  Google Scholar 

  • Mabrey, S., Sturtevant, J.M. (1976) Investigation of phase transitions of lipids and lipid mixtures by high-sensitivity differential scanning calorimetry. Proc. Natl. Acad. Sci. USA 73:3862–3866.

    Article  ADS  Google Scholar 

  • Mahalakshmi, R., Marassi, F.M. (2008) Orientation of the Escherichia coli outer membrane protein OmpX in phospholipid bilayer membranes determined by solid-State NMR. Biochemistry 47:6531–6538.

    Article  Google Scholar 

  • Mak, P.J., Gregory, M.C., Denisov, I.G., Sligar, S.G., Kincaid, J.R. (2015) Unveiling the crucial intermediates in androgen production. Proc. Natl. Acad. Sci. USA 112:15856–15861.

    Article  ADS  Google Scholar 

  • Mäler, L., Gräslund, A. (2009) Artificial membrane models for the study of macromolecular delivery. Meth. Mol. Biol. 480:129–139.

    Article  Google Scholar 

  • Malhotra, K., Alder, N.N. (2014) Advances in the use of nanoscale bilayers to study membrane protein structure and function. Biotechnol. Genet. Eng. Rev. 30:79–93.

    Article  Google Scholar 

  • Marcotte, I., Auger, M. (2005) Bicelles as model membranes for solid- and solution-state NMR studies of membrane peptides and proteins. Concepts Magn. Reson. 24A:17–37.

    Article  Google Scholar 

  • Marty, M.T., Hoi, K.K., Robinson, C.V. (2016) Interfacing membrane mimetics with mass spectrometry. Acc. Chem. Res. 49:2459–2467.

    Article  Google Scholar 

  • Marty, M.T., Wilcox, K.C., Klein, W.L., Sligar, S.G. (2013) Nanodisc-solubilized membrane protein library reflects the membrane proteome. Anal. Bioanal. Chem. 405:4009–4016.

    Article  Google Scholar 

  • Matsumoto, K., Vaughn, M., Bruce, B.D., Koutsopoulos, S., Zhang, S. (2009) Designer peptide surfactants stabilize functional photosystem I membrane complex in aqueous solution for extended time. J. Phys. Chem. B 113:75–83.

    Article  Google Scholar 

  • Matthies, D., Dalmas, O., Borgnia, M.J., Dominik, P.K., Merk, A., Rao, P., Reddy, B.G., Islam, S., Bartesaghi, A., Perozo, E., Subramaniam, S. (2016) Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating. Cell 164:747–756.

    Article  Google Scholar 

  • McGregor, C.-L., Chen, L., Pomroy, N.C., Hwang, P., Go, S., Chakrabartty, A., Privé, G.G. (2003) Lipopeptide detergents designed for the structural study of membrane proteins. Nat. Biotechnol. 21:171–176.

    Article  Google Scholar 

  • McKibbin, C., Farmer, N.A., Edwards, P.C., Villa, C., Booth, P.J. (2009) Urea unfolding of opsin in phospholipid bicelles. Photochem. Photobiol. 85:494–500.

    Article  Google Scholar 

  • McKibbin, C., Farmer, N.A., Jeans, C., Reeves, P.J., Khorana, H.G., Wallace, B.A., Edwards, P.C., Villa, C., Booth, P.J. (2007) Opsin stability and folding: modulation by phospholipid bicelles. J. Mol. Biol. 374:1319–1332.

    Article  Google Scholar 

  • Midtgaard, S.R., Pedersen, M.C., Kirkensgaard, J.J.K., Sorensen, K.K., Mortensen, K., Jensen, K.J., Arleth, L. (2014) Self-assembling peptides form nanodiscs that stabilize membrane proteins. Soft Matter 10:738–752.

    Article  ADS  Google Scholar 

  • Mineev, K.S., Goncharuk, S.A., Kuzmichev, P.K., Vilar, M., Arseniev, A.S. (2015) NMR dynamics of transmembrane and intracellular domains of p75NTR in lipid-protein nanodiscs. Biophys. J. 109:772–782.

    Article  ADS  Google Scholar 

  • Mineev, K.S., Nadezhdin, K.D. (2017) Membrane mimetics for solution NMR studies of membrane proteins. Nanotech. Rev. 6:15–32.

    Google Scholar 

  • Mineev, K.S., Nadezhdin, K.D., Goncharuk, S.A., Arseniev, A.S. (2017) Facade detergents as bicelle rim-forming agents for solution NMR spectroscopy. Nanotech. Rev. 6:93–103.

    Google Scholar 

  • Mitra, N., Liu, Y., Liu, J., Serebryany, E., Mooney, V., DeVree, B.T., Sunahara, R.K., Yan, E.C.Y. (2013) Calcium-dependent ligand binding and G protein signaling of family B GPCR parathyroid hormone 1 receptor purified in nanodiscs. ACS Chem. Biol. 8:617–625.

    Article  Google Scholar 

  • Miyazaki, M., Nakano, M., Fukuda, M., Handa, T. (2009) Smaller discoidal high-density lipoprotein particles form saddle surfaces, but not planar bilayers. Biochemistry 48:7756–7763.

    Article  Google Scholar 

  • Mizrachi, D., Robinson, M.-P., Ren, G., Ke, N., Berkmen, M., DeLisa, M.P. (2017) A water-soluble DsbB variant that catalyzes disulfide-bond formation in vivo. Nat. Chem. Biol. 13:1022–1028.

    Article  Google Scholar 

  • Morgado, L., Zeth, K., Burmann, B.M., Maier, T., Hiller, S. (2015) Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy. J. Biomol. NMR 61:333–345.

    Article  Google Scholar 

  • Morrison, E.A., DeKoster, G.T., Dutta, S., Vafabakhsh, R., Clarkson, M.W., Bahl, A., Kern, D., Ha, T., Henzler-Wildman, K.A. (2011) Antiparallel EmrE exports drugs by exchanging between asymmetric structures. Nature 481:45–50.

    Article  ADS  Google Scholar 

  • Morrison, E.A., Henzler-Wildman, K.A. (2012) Reconstitution of integral membrane proteins into isotropic bicelles with improved sample stability and expanded lipid composition profile. Biochim. Biophys. Acta 1818:814–820.

    Article  Google Scholar 

  • Mörs, K., Roos, C., Scholz, F., Wachtveitl, J., Dötsch, V., Bernhard, F., Glaubitz, C. (2013) Modified lipid and protein dynamics in nanodiscs. Biochim. Biophys. Acta 1828:1222–1229.

    Article  Google Scholar 

  • Mukerjee, P. (1994) Fluorocarbon-hydrocarbon interactions in micelles and other lipid assemblies, at interfaces, and in solutions. Colloids Surf. A 84:1–10.

    Article  Google Scholar 

  • Muller, K. (1981) Structural dimorphism in bile salt/lecithin mixed micelles. X-ray structural analysis. Biochemistry 20:404–414.

    Article  Google Scholar 

  • Nakano, T.Y., Sugihara, G., Nakashima, T., Yu, S.C. (2002) Thermodynamic study of mixed hydrocarbon/fluorocarbon surfactant system by conductometric and fluorimetric techniques. Langmuir 18:8777–8785.

    Article  Google Scholar 

  • Nasr, M.L., Baptista, D., Strauss, M., Sun, Z.J., Grigoriu, S., Huser, S., Plückthun, A., Hagn, F., Walz, T., Hogle, J.M., Wagner, G. (2017) Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat. Meth. 14:49–52.

    Article  Google Scholar 

  • Nath, A., Atkins, W.M., Sligar, S.G. (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46:2059–2069.

    Article  Google Scholar 

  • Nath, A., Koo, P.K., Rhoades, E., Atkins, W.M. (2008) Allosteric effects on substrate dissociation from cytochrome P450 3A4 in nanodiscs observed by ensemble and single-molecule fluorescence spectroscopy. J. Am. Chem. Soc. 130:15746–15747.

    Article  Google Scholar 

  • Nehmé, R., Joubert, O., Bidet, M., Lacombe, B., Polidori, A., Pucci, B., Mus-Veteau, I. (2010) Stability study of the human G protein-coupled receptor, Smoothened. Biochim. Biophys. Acta 1786:1100–1110.

    Article  Google Scholar 

  • Nietlispach, D., Gautier, A. (2011) Solution NMR studies of polytopic alpha-helical membrane proteins. Curr. Opin. Struct. Biol. 21:497–508.

    Article  Google Scholar 

  • Nikolaev, M., Round, E., Gushchin, I., Polovinkin, V., Balandin, T., Kuzmichev, P., Shevchenko, V., Borshchevskiy, V., Kuklin, A., Round, A., Bernhard, F., Willbold, D., Büldt, G., Gordeliy, V. (2017) Integral membrane proteins can be crystallized directly from nanodiscs. Cryst. Growth Des. 17:945–948.

    Article  Google Scholar 

  • Noinaj, N., Kuszak, A.J., Gumbart, J.C., Lukacik, P., Chang, H., Easley, N.C., Lithgow, T., Buchanan, S.K. (2013) Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501:385–390.

    Article  ADS  Google Scholar 

  • Nolte, R.T., Atkinson, D. (1992) Conformational analysis of apolipoproteins A-I and E-3 based on primary sequence and circular dichroism. Biophys. J. 63:1221–1239.

    Article  ADS  Google Scholar 

  • Nusair, N.A., Mayo, D.J., Dorozenski, T.D., Cardon, T.B., Inbaraj, J.J., Karp, E.S., Newstadt, J.P., Grosser, S.M., Lorigan, G.A. (2012) Time-resolved EPR immersion depth studies of a transmembrane peptide incorporated into bicelles. Biochim. Biophys. Acta 1818:821–828.

    Article  Google Scholar 

  • Opella, S.J., Marassi, F.M. (2004) Structure determination of membrane proteins by NMR spectroscopy. Chem. Rev. 104:3587–3606.

    Article  Google Scholar 

  • Otzen, D.E. (2015) Proteins in a brave new surfactant world. Curr. Opin. Colloid Interface Sci. 20:161–169.

    Article  Google Scholar 

  • Palchevskyy, S.S., Posokhov, Y.O., Olivier, B., Popot, J.-L., Pucci, B., Ladokhin, A.S. (2006) Chaperoning of membrane protein insertion into lipid bilayers by hemifluorinated surfactants: application to diphtheria toxin. Biochemistry 45:2629–2635.

    Article  Google Scholar 

  • Park, K.-H., Berrier, C., Lebaupain, F., Pucci, B., Popot, J.-L., Ghazi, A., Zito, F. (2007) Fluorinated and hemifluorinated surfactants as alternatives to detergents for membrane protein cell-free synthesis. Biochem. J. 403:183–187.

    Article  Google Scholar 

  • Park, K.-H., Billon-Denis, E., Dahmane, T., Lebaupain, F., Pucci, B., Breyton, C., Zito, F. (2011) In the cauldron of cell-free synthesis of membrane proteins: Playing with new surfactants. New Biotech. 28:255–261.

    Article  Google Scholar 

  • Park, S.H., Berkamp, S., Cook, G.A., Chan, M.K., Viadiu, H., Opella, S.J. (2011a) Nanodiscs versus macrodiscs for NMR of membrane proteins. Biochemistry 50:8983–8985.

    Article  Google Scholar 

  • Park, S.H., Casagrande, F., Cho, L., Albrecht, L., Opella, S.J. (2011b) Interactions of interleukin-8 with the human chemokine receptor CXCR1 in phospholipid bilayers by NMR spectroscopy. J. Mol. Biol. 414:194–203.

    Article  Google Scholar 

  • Park, S.H., Casagrande, F., Das, B.B., Albrecht, L., Chu, M., Opella, S.J. (2011c) Local and global dynamics of the G protein-coupled receptor CXCR1. Biochemistry 50:2371–2380.

    Article  Google Scholar 

  • Park, S.H., Das, B.B., Casagrande, F., Tian, Y., Nothnagel, H.J., Chu, M., Kiefer, H., Maier, K., De Angelis, A.A., Marassi, F.M., Opella, S.J. (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:770–783.

    ADS  Google Scholar 

  • Park, S.H., Prytulla, S., De Angelis, A.A., Brown, J.M., Kiefer, H., Opella, S.J. (2006) High-resolution NMR spectroscopy of a GPCR in aligned bicelles. J. Am. Chem. Soc. 128:7402–7403.

    Article  Google Scholar 

  • Pavia, A.A., Pucci, B., Riess, J.G., Zarif, L. (1991) New fluorinated biocompatible non-ionic telomeric amphiphiles bearing trishydroxymethyl groups. Bioorg. Med. Chem. Letters 1:103–106.

    Article  Google Scholar 

  • Periasamy, A., Shadiac, N., Amalraj, A., Garajová, S., Nagarajan, Y., Waters, S., Mertens, H.D.T., Hrmova, M. (2013) Cell-free protein synthesis of membrane (1,3)-β-d-glucan (curdlan) synthase: co-translational insertion in liposomes and reconstitution in nanodiscs. Biochim. Biophys. Acta 1828:743–757.

    Article  Google Scholar 

  • Peters, B.M., Shirtliff, M.E., Jabra-Rizk, M.A. (2010) Antimicrobial peptides: Primeval molecules or future drugs? PLoS Pathog. 6:e1001067.

    Article  Google Scholar 

  • Petkova, V., Benattar, J.J., Zoonens, M., Zito, F., Popot, J.-L., Polidori, A., Jasseron, S., Pucci, B. (2007) Free-standing films of fluorinated surfactants as 2D matrices for organizing detergent-solubilized membrane proteins. Langmuir 23:4303–4309.

    Article  Google Scholar 

  • Phillips, J.C., Wriggers, W., Li, Z., Jonas, A., Schulten, K. (1997) Predicting the structure of apolipoprotein A-I in reconstituted high-density lipoprotein disks. Biophys. J. 73:2337–2346.

    Article  Google Scholar 

  • Phillips, M.C. (2013) New insights into the determination of HDL structure by apolipoproteins. J. Lipid Res. 54:2034–2048.

    Article  Google Scholar 

  • Poget, S.F., Cahill, S.M., Girvin, M.E. (2007) Isotropic bicelles stabilize the functional form of a small multidrug-resistance pump for NMR structural studies. J. Am. Chem. Soc. 129:2432–2433.

    Article  Google Scholar 

  • Poget, S.F., Girvin, M.E. (2007) Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Biochim. Biophys. Acta 1768:3098–3106.

    Article  Google Scholar 

  • Polidori, A., Presset, M., Lebaupain, F., Améduri, B., Popot, J.-L., Breyton, C., Pucci, B. (2006) Fluorinated and hemifluorinated surfactants derived from maltose: Synthesis and application to handling membrane proteins in aqueous solution. Bioorg. Med. Chem. Lett. 16:5827–5831.

    Article  Google Scholar 

  • Polidori, A., Raynal, S., Barret, L.-A., Dahani, M., Barrot-Ivolot, C., Jungas, C., Frotscher, E., Keller, S., Ebel, C., Breyton, C., Bonneté, F. (2016) Sparingly fluorinated maltoside-based surfactants for membrane-protein stabilization. New J. Chem. 40:5364–5378.

    Article  Google Scholar 

  • Polovinkin, V., Gushchin, I., Balandin, T., Chervakov, P., Round, E., Shevchenko, V., Popov, A., Borshchevskiy, V., Popot, J.-L., Gordeliy, V. (2014) High-resolution structure of a membrane protein transferred from amphipol to a lipidic mesophase. J. Membr. Biol. 247:997–1004.

    Article  Google Scholar 

  • Popot, J.-L. (2010) Amphipols, nanodiscs, and fluorinated surfactants: Three non-conventional approaches to studying membrane proteins in aqueous solutions. Annu. Rev. Biochem. 79:737–775.

    Article  Google Scholar 

  • Popot, J.-L., Engelman, D.M. (2000) Helical membrane protein folding, stability and evolution. Annu. Rev. Biochem. 69:881–923.

    Article  Google Scholar 

  • Popovic, K., Holyoake, J., Pomès, R., Privé, G.G. (2012) Structure of saposin A lipoprotein discs. Proc. Natl. Acad. Sci. USA 109:2908–2912.

    Article  ADS  Google Scholar 

  • Posokhov, Y.O., Rodnin, M.V., Das, S.K., Pucci, B., Ladokhin, A.S. (2008) FCS study of the thermodynamics of membrane protein insertion into the lipid bilayer chaperoned by fluorinated surfactants. Biophys. J. 95:L54-L56.

    Article  Google Scholar 

  • Poulos, S., Morgan, J.L., Zimmer, J., Faham, S. (2015) Bicelles coming of age: an empirical approach to bicelle crystallization. Meth. Enzymol. 557:393–416.

    Article  Google Scholar 

  • Privé, G. (2009) Lipopeptide detergents for membrane protein studies. Curr. Opin. Struct. Biol. 19:1–7.

    Article  Google Scholar 

  • Prosser, R.S., Evanics, F., Kitevski, J.L., Al-Abdul-Wahid, M.S. (2006) Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins. Biochemistry 45:8453–8465.

    Article  Google Scholar 

  • Prosser, R.S., Hunt, S.A., DiNatale, J.A., Vold, R.R. (1996) Magnetically aligned membrane model systems with positive order parameters: switching the sign of Szz with paramagnetic ions. J. Am. Chem. Soc. 118:269–270.

    Article  Google Scholar 

  • Prosser, R.S., Hwang, J.S., Vold, R.R. (1998) Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system. Biophys. J. 74:2405–2418.

    Article  ADS  Google Scholar 

  • Proverbio, D., Roos, C., Beyermann, M., Orbán, E., Dötsch, V., Bernhard, F. (2013) Functional properties of cell-free expressed human endothelin A and endothelin B receptors in artificial membrane environments. Biochim. Biophys. Acta 1828:2182–2192.

    Article  Google Scholar 

  • Puthenveetil, R., Nguyen, K., Vinogradova, O. (2017) Nanodiscs and solution NMR: preparation, application and challenges. Nanotech. Rev. 6:111–126.

    Google Scholar 

  • Puthenveetil, R., Vinogradova, O. (2013) Optimization of the design and preparation of nanoscale phospholipid bilayers for its application to solution NMR. Proteins: Struct. Funct. Bioinf. 81:1222–1231.

    Article  Google Scholar 

  • Qureshi, T., Goto, N.K. (2011) Contemporary methods in structure determination of membrane proteins by solution NMR. Top. Curr. Chem. 326:123–185.

    Article  Google Scholar 

  • Ram, P., Prestegard, J.H. (1988) Magnetic field-induced ordering of bile salt/phospholipid micelles: new media for NMR structural investigations. Biochim. Biophys. Acta 940:289–294.

    Article  Google Scholar 

  • Ramjeesingh, M., Huan, L.J., Garami, E., Bear, C.E. (1999) Novel method for evaluation of the oligomeric structure of membrane proteins. Biochem. J. 342.

    Article  Google Scholar 

  • Ranaghan, M.J., Schwall, C.T., Alder, N.N., Birge, R.R. (2011) Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. J. Am. Chem. Soc. 133:18318–18327.

    Article  Google Scholar 

  • Raschle, T., Hiller, S., Etzkorn, M., Wagner, G. (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr. Opin. Struct. Biol. 20:471–479.

    Article  Google Scholar 

  • Raschle, T., Hiller, S., Yu, T.Y., Rice, A.J., Walz, T., Wagner, G. (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J. Am. Chem. Soc. 131:17777–17779.

    Article  Google Scholar 

  • Rasmussen, S.G., Choi, H.J., Rosenbaum, D.M., Kobilka, T.S., Thian, F.S., Edwards, P.C., Burghammer, M., Ratnala, V.R., Sanishvili, R., Fischetti, R.F., Schertler, G.F., Weis, W.I., Kobilka, B.K. (2007) Crystal structure of the human β2 adrenergic G protein-coupled receptor. Nature 450:383–387.

    Article  ADS  Google Scholar 

  • Raychaudhuri, P., Li, Q., Mason, A., Mikhailova, E., Heron, A.J., Bayley, H. (2011) Fluorinated amphiphiles control the insertion of α-hemolysin pores into lipid bilayers. Biochemistry 50:1599–1606.

    Article  Google Scholar 

  • Reichart, T.M., Baksh, M.M., Rhee, J.-K., Fiedler, J.D., Sligar, S.G., Finn, M.G., Zwick, M.B., Dawson, P.E. (2016) Trimerization of the HIV transmembrane domain in lipid bilayers modulates broadly neutralizing antibody binding. Angew. Chem. Int. Ed. 55:2688–2692.

    Article  Google Scholar 

  • Riess, J.G. (2005) Fluorous materials for biomedical uses, in: Gladysz, J.A., Curran, D.P., Horváth, I.T., eds., Handbook of fluorous chemistry. Wiley-VCH, Weinheim, pp. 521–573.

    Chapter  Google Scholar 

  • Ritchie, T.K., Grinkova, Y.V., Bayburt, T.H., Denisov, I.G., Zolnerciks, J.K., Atkins, W.M., Sligar, S.G. (2009) Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Meth. Enzymol. 464:211–231.

    Article  Google Scholar 

  • Ritchie, T.K., Kwon, H., Atkins, W.M. (2011) Conformational analysis of human ATP-binding cassette transporter ABCB1 in lipid nanodiscs and inhibition by the antibodies MRK16 and UIC2. J. Biol. Chem. 286:39489–39496.

    Article  Google Scholar 

  • Rodnin, M.V., Posokhov, Y.O., Contino-Pépin, C., Brettmann, J., Kyrychenko, A., Palchevskyy, S.S., Pucci, B., Ladokhin, A.S. (2008) Interactions of fluorinated surfactants with diphtheria toxin T-domain: testing new media for studies of membrane proteins. Biophys. J. 94:4348–4357.

    Article  ADS  Google Scholar 

  • Roos, C., Zocher, M., Müller, D., Münch, D., Schneider, T., Sahl, H.G., Scholz, F., Wachtveitl, J., Ma, Y., Proverbio, D., Henrich, E., Dötsch, V., Bernhard, F. (2012) Characterization of co-translationally formed nanodisc complexes with small multidrug transporters, proteorhodopsin and with the E. coli MraY translocase. Biochim. Biophys. Acta 1818:3898–3106.

    Google Scholar 

  • Roy, J., Pondenis, H., Fan, T.M., Das, A. (2015) Direct capture of functional proteins from mammalian plasma membranes into nanodiscs. Biochemistry 54:6299–6302.

    Article  Google Scholar 

  • Rues, R.-B., Dötsch, V., Bernhard, F. (2016) Co-translational formation and pharmacological characterization of β-adrenergic receptor/nanodisc complexes with different lipid environments. Biochim. Biophys. Acta 1858:1306–1316.

    Article  Google Scholar 

  • Sanders, C.R. (2008) Development and application of bicelles for use in biological NMR and other biophysical studies, in: Webb, G.A., ed., Modern Magnetic Resonance. Springer, Dordrecht, pp. 233–239.

    Google Scholar 

  • Sanders, C.R., Prosser, R.S. (1998) Bicelles: a model membrane system for all seasons? Structure 6:1227–1234.

    Article  Google Scholar 

  • Sanders, C.R., Schwonek, J.P. (1992) Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry 31:8898–8905.

    Article  Google Scholar 

  • Sanders, C.R., Sönnichsen, F. (2006) Solution NMR of membrane proteins: practice and challenges. Magn. Reson. Chem. 44:S24–S40.

    Article  Google Scholar 

  • Sanders II, C.R., Hare, B.J., Howard, K.P., Prestegard, J.H. (1994) Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog. NMR Spectrosc. 26:421–444.

    Article  Google Scholar 

  • Sanders II, C.R., Landis, G.C. (1995) Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry 34:4030–4040.

    Article  Google Scholar 

  • Sanders II, C.R., Prestegard, J.H. (1990) Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO. Biophys. J. 58:447–460.

    Article  Google Scholar 

  • Sanii, L.S., El-Sayed, M.A. (2005) Partial dehydration of the retinal binding pocket and proof for photochemical deprotonation of the retinal Schiff base in bicelle bacteriorhodopsin crystals. Photochem. Photobiol. 81:1356–1360.

    Article  Google Scholar 

  • Sanii, L.S., Schill, A.W., Moran, C.E., El-Sayed, M.A. (2005) The protonation-deprotonation kinetics of the protonated Schiff base in bicelle bacteriorhodopsin crystals. Biophys. J. 89:444–451.

    Article  ADS  Google Scholar 

  • Santoso, S., Hwang, W., Hartman, H., Zhang, S. (2002) Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett. 2:687–691.

    Article  ADS  Google Scholar 

  • Schafmeister, C.E., Miercke, L.J.W., Stroud, R.A. (1993) Structure at 2.5 Å of a designed peptide that maintains solubility of membrane proteins. Science 262:734–738.

    Article  ADS  Google Scholar 

  • Schoch, G.A., Attias, R., Belghazi, M., Dansette, P.M., Werck-Reichhart, D. (2003) Engineering of a water-soluble plant cytochrome P450, CYP73A1, and NMR-based orientation of natural and alternate substrates in the active site. Plant Physiol. 133:1198–1208.

    Article  Google Scholar 

  • Segrest, J.P., Jones, M.K., Klon, A.E., Sheldahl, C.J., Hellinger, M., De Loof, H., Harvey, S.C. (1999) A detailed molecular belt model for apolipoprotein A-I in discoidal high-density lipoprotein. J. Biol. Chem. 274:31755–31758.

    Article  Google Scholar 

  • Serebryany, E., Zhu, G.A., Yan, E.C.Y. (2012) Artificial membrane-like environments for in vitro studies of purified G-protein coupled receptors. Biochim. Biophys. Acta 1818:225–233.

    Article  Google Scholar 

  • Sevugan Chetty, P., Mayne, L., Kan, Z.Y., Lund-Katz, S., Englander, S.W., Phillips, M.C. (2012) Apolipoprotein A-I helical structure and stability in discoidal high density lipoprotein (HDL) particles by hydrogen exchange and mass spectrometry. Proc. Natl. Acad. Sci. USA 109:11687–11692.

    Article  ADS  Google Scholar 

  • Shaw, A.W., McLean, M.A., Sligar, S.G. (2004) Phospholipid phase transitions in homogeneous nanometer scale bilayers discs. FEBS Lett. 556:260–264.

    Article  Google Scholar 

  • Shaw, A.W., Pureza, V.S., Sligar, S.G., Morrissey, J.H. (2007) The local phospholipid environment modulates the activation of blood clotting. J. Biol. Chem. 282:6556–6563.

    Article  Google Scholar 

  • Shen, P.S., Yang, X., DeCaen, P.G., Liu, X., Bulkley, D., Clapham, D.E., Cao, E. (2016) The structure of the Polycystic Kidney Disease channel PKD2 in lipid nanodiscs. Cell 167:763–773.

    Article  Google Scholar 

  • Shenkarev, Z.O., Lyukmanova, E.N., Butenko, I.O., Petrovskaya, L.E., Paramonov, A.S., Shulepko, M.A., Nekrasova, O.V., Kirpichnikov, M.P., Arseniev, A.S. (2013) Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins. Biochim. Biophys. Acta 1828:776–784.

    Article  Google Scholar 

  • Shenkarev, Z.O., Lyukmanova, E.N., Paramonov, A.S., Shingarova, L.N., Chupin, V.V., Kirpichnikov, M.P., Blommers, M.J., Arseniev, A.S. (2010) Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. J. Am. Chem. Soc. 132:5628–5629.

    Article  Google Scholar 

  • Shepherd, F.H., Holzenburg, A. (1995) The potential of fluorinated surfactants in membrane biochemistry. Anal. Biochem. 224:21–27.

    Article  Google Scholar 

  • Shi, L., Howan, K., Shen, Q.T., Wang, Y.J., Rothman, J.E., Pincet, F. (2013) Preparation and characterization of SNARE-containing nanodiscs and direct study of cargo release through fusion pores. Nat. Protoc. 8:935–948.

    Article  Google Scholar 

  • Shi, L., Shen, Q.T., Kiel, A., Wang, J., Wang, H.W., Melia, T.J., Rothman, J.E., Pincet, F. (2012) SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science 335:1355–1359.

    Article  ADS  Google Scholar 

  • Shih, A.Y., Denisov, I.G., Phillips, J.C., Sligar, S.G., Schulten, K. (2005) Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins. Biophys. J. 88:548–556.

    Article  ADS  Google Scholar 

  • Shimada, S., Shinzawa-Itoh, K., Baba, J., Aoe, S., Shimada, A., Yamashita, E., Kang, J., Tateno, M., Yoshikawa, S., Tsukihara, T. (2017) Complex structure of cytochrome c-cytochrome c oxidase reveals a novel protein-protein interaction mode. EMBO J. 36:291–300.

    Article  Google Scholar 

  • Shin, J., Lou, X., Kweon, D.-H., Shin, Y.-K. (2014) Multiple conformations of a single SNAREpin between two nanodisc membranes reveal diverse pre-fusion states. Biochem. J. 459:95–102.

    Article  Google Scholar 

  • Shirzad-Wasei, N., Oostrum, J.V., Bovee-Geurts, P.H., Kusters, L.J., Bosman, G.J., DeGrip, W.J. (2015) Rapid transfer of overexpressed integral membrane protein from the host membrane into soluble lipid nanodiscs without previous purification. Biol. Chem. 396:903–916.

    Article  Google Scholar 

  • Singh, R., Flowers, R.A., II (2010) Efficient protein renaturation using tunable hemifluorinated anionic surfactants as additives. Chem. Commun. 46:276–278.

    Article  Google Scholar 

  • Siuda, I., Tieleman, D.P. (2015) Molecular models of nanodiscs. J. Chem. Theory Comput. 11:4923–4932.

    Article  Google Scholar 

  • Skar-Gislinge, N., Kynde, S.A., Denisov, I.G., Ye, X., Lenov, I., Sligar, S.G., Arleth, L. (2015) Small-angle scattering determination of the shape and localization of human cytochrome P450 embedded in a phospholipid nanodisc environment. Acta Crystallogr. D Biol. Crystallogr. 71:2412–2421.

    Article  Google Scholar 

  • Small, D.M. (1971) The physical chemistry of cholanic acids, in: P.P. Nair & D. Kritchevsky, eds., The Bile Acids, Plenum Press, pp. 249–356.

    Chapter  Google Scholar 

  • Smrt, S.T., Draney, A.W., Singaram, I., Lorieau, J.L. (2017) Structure and dynamics of membrane proteins and membrane associated proteins with native bicelles from eukaryotic tissues. Biochemistry 56:5318–5327.

    Article  Google Scholar 

  • Sobolev, V., Edelman, M., Dym, O., Unger, T., Albeck, S., Kirma, M., Galili, G. (2013) Structure of ALD1, a plant-specific homologue of the universal diaminopimelate aminotransferase enzyme of lysine biosynthesis. Acta Crystallogr. F 69:84–89.

    Article  Google Scholar 

  • Soomets, U., Kairane, C., Zilmer, M., Langel, U. (1997) Attempt to solubilize Na+/K+-exchanging ATPase with amphiphilic peptide PD1. Acta. Chem. Scand. 51:403–406.

    Article  Google Scholar 

  • Starita-Geribaldi, M., Thebault, P., Taffin de Givenchy, E., Guittard, F., Geribaldi, S. (2007) 2-DE using hemi-fluorinated surfactants. Electrophoresis 28:2489–2497.

    Article  Google Scholar 

  • Sternin, E., Nizza, D., Gawrisch, K. (2001) Temperature dependence of DMPC/DHPC mixing in a bicellar solution and its structural implications. Langmuir 17:2610–2616.

    Article  Google Scholar 

  • Talbot, J.-C., Dautant, A., Polidori, A., Pucci, B., Cohen-Bouhacina, T., Maali, A., Salin, B., Brèthes, D., Velours, J., Giraud, M.-F. (2009) Hydrogenated and fluorinated surfactants derived from tris(hydroxymethyl)-acrylamidomethane allow the purification of a highly active yeast F1FO ATP synthase with an enhanced stability. J. Bioenerg. Biomemb. 41:349–360.

    Article  Google Scholar 

  • Tanford, C. (1980) The hydrophobic effect: formation of micelles and biological membranes, 2nd ed.. John Wiley & Sons, New York, 233 p.

    Google Scholar 

  • Tao, H., Lee, S.C., Moeller, A., Roy, R.S., Siu, F.Y., Zimmermann, J., Stevens, R.C., Potter, C.S., Carragher, B., Zhang, Q. (2013) Engineered nanostructured β-sheet peptides protect membrane proteins. Nat. Methods 10:759–761.

    Article  Google Scholar 

  • Taufik, I., Kedrov, A., Exterkate, M., Driessen, A.J.M. (2013) Monitoring the activity of single translocons. J. Mol. Biol. 425:4145–4153.

    Article  Google Scholar 

  • Thebault, P., Taffin de Givenchy, E., Starita-Geribaldi, M., Guittard, F., Geribaldi, S. (2007) Synthesis and surface properties of new semifluorinated sulfobetaines potentially usable for 2D-electrophoresis. J. Fluorine Chem. 128:211–218.

    Article  Google Scholar 

  • Tiburu, E.K., Moton, D.M., Lorigan, G.A. (2001) Development of magnetically aligned phospholipid bilayers in mixtures of palmitoylstearoylphosphatidylcholine and dihexanoylphosphatidylcholine by solid-state NMR spectroscopy. Biochim. Biophys. Acta 1512:206–214.

    Article  Google Scholar 

  • Triba, M.N., Warschawski, D.E., Devaux, P.F. (2005) Reinvestigation by phosphorus NMR of lipid distribution in bicelles. Biophys. J. 88:1887–1901.

    Article  Google Scholar 

  • Triba, M.N., Zoonens, M., Popot, J.-L., Devaux, P.F., Warschawski, D.E. (2006) Reconstitution and alignment by a magnetic field of a β-barrel membrane protein in bicelles. Eur. Biophys. J. 35:268–275.

    Article  Google Scholar 

  • Tsukamoto, H., Szundi, I., Lewis, J.W., Farrens, D.L., Kliger, D.S. (2011) Rhodopsin in nanodiscs has native membrane-like photointermediates. Biochemistry 50:5086–5091.

    Article  Google Scholar 

  • Tu, Y., Peng, F., Adawy, A., Men, Y., Abdelmohsen, L.K.E.A., Wilson, D.A. (2016) Mimicking the cell: bio-Inspired functions of supramolecular assemblies. Chem. Rev. 116:2023–2078.

    Article  Google Scholar 

  • Tzitzilonis, C., Eichmann, C., Maslennikov, I., Choe, S., Riek, R. (2013) Detergent/nanodisc screening for high-resolution NMR studies of an integral membrane protein containing a cytoplasmic domain. PLoS One 8:e54378.

    Article  ADS  Google Scholar 

  • Uhlemann, E.M., Pierson, H.E., Fillingame, R.H., Dmitriev, O.Y. (2012) Cell-free synthesis of membrane subunits of ATP synthase in phospholipid bicelles: NMR shows subunit fold similar to the protein in the cell membrane. Prot. Sci. 21:279–288.

    Article  Google Scholar 

  • Ujwal, R., Bowie, J.U. (2011) Crystallizing membrane proteins using lipidic bicelles. Methods 55:337–341.

    Article  Google Scholar 

  • Ujwal, R., Cascio, D., Colletier, J.-P., Faham, S., Zhang, J., Toro, L., Ping, P., Abramson, J. (2008) The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating. Proc. Natl. Acad. Sci. USA 105:17742–17747.

    Article  ADS  Google Scholar 

  • van Dam, L., Karlsson, G., Edwards, K. (2006) Morphology of magnetically aligning DMPC/DHPC aggregates – perforated sheets, not disks. Langmuir 22:3280–3285.

    Article  Google Scholar 

  • Vargas, C., Cuevas Arenas, R., Frotscher, E., Keller, S. (2015) Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants. Nanoscale 7:20685–20696.

    Article  ADS  Google Scholar 

  • Varkey, J., Mizuno, N., Hegde, B.G., Cheng, N., Steven, A.C., Langen, R. (2013) α-Synuclein oligomers with broken helical conformation form lipoprotein nanoparticles. J. Biol. Chem. 288:17620–17630.

    Article  Google Scholar 

  • Vauthey, S., Santoso, S., Gong, H., Watson, N., Zhang, S. (2002) Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. USA 99:5355–5360.

    Article  ADS  Google Scholar 

  • Vénien-Bryan, C., Balavoine, F., Toussaint, B., Mioskowski, C., Hewat, E., Helme, B., Vignais, P. (1997) Structural study of the response regulator HupR from Rhodobacter capsulatus. Electron microscopy of 2D crystals on a nickel-chelating lipid. J. Mol. Biol. 274:687–692.

    Article  Google Scholar 

  • Vestergaard, M., Kraft, J.F., Vosegaard, T., Thøgersen, L., Schiøtt, B. (2015) Bicelles and other membrane mimics: Comparison of structure, properties, and dynamics from MD simulations. J. Phys. Chem. B 119:15831–15843.

    Article  Google Scholar 

  • Viegas, A., Viennet, T., Etzkorn, M. (2016) The power, pitfalls and potential of the nanodisc system for NMR-based studies. Biol. Chem. 397:1335–1354.

    Article  Google Scholar 

  • Vinothkumar, K.R. (2011) Structure of rhomboid protease in a lipid environment. J. Mol. Biol. 407:232–247.

    Article  Google Scholar 

  • Vold, R.R., Prosser, R.S. (1996) Magnetically oriented phospholipid bilayered micelles for structural studies of polypeptides. Does the ideal bicelle exist? J. Magn. Reson. B113:267–271.

    Article  Google Scholar 

  • von Maltzahn, G., Vauthey, S., Santoso, S., Zhang, S. (2003) Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir 19:4332–4337.

    Article  Google Scholar 

  • Wadsäter, M., Laursen, T., Singha, A., Hatzakis, N.S., Stamou, D., Barker, R., Mortensen, K., Feidenhans’l, R., Møller, B.L., Cárdenas, M. (2012) Monitoring shifts in the conformation equilibrium of the membrane protein cytochrome P450 reductase (POR) in nanodiscs. J. Biol. Chem. 287:34596–34603.

    Article  Google Scholar 

  • Wald, J.H., Goormaghtigh, E., De Meutter, J., Ruysschaert, J.M., Jonas, A. (1990a) Investigation of the lipid domains and apolipoprotein orientation in reconstituted high-density lipoproteins by fluorescence and IR methods. J. Biol. Chem.:20044–20050.

    Google Scholar 

  • Wald, J.H., Krul, E.S., Jonas, A. (1990b) Structure of apolipoprotein A-I in three homogeneous, reconstituted high-density lipoprotein particles. J. Biol. Chem. 265:20037–20043.

    Google Scholar 

  • Wang, G. (2008) NMR of membrane-associated peptides and proteins. Curr. Protein Pept. Sci. 9:50–69.

    Article  Google Scholar 

  • Wang, X., Mu, Z., Li, Y., Bi, Y., Wang, Y. (2015) Smaller nanodiscs are suitable for studying protein lipid interactions by solution NMR. Protein J. 34:205–211.

    Article  Google Scholar 

  • Wang, X.Q., Corin, K., Baaske, P., Wienken, C.J., Jerabek-Willemsen, M., Duhr, S., Braun, D., Zhang, S.G. (2011) Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 108:9049–9054.

    Article  ADS  Google Scholar 

  • Warschawski, D.E., Arnold, A.A., Beaugrand, M., Gravel, A., Chartrand, E., Marcotte, I. (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim. Biophys. Acta 1808:1957–1974.

    Article  Google Scholar 

  • Wilcox, K.C., Marunde, M.R., Das, A., Velasco, P.T., Kuhns, B.D., Marty, M.T., Jiang, H., Luan, C.H., Sligar, S.G., Klein, W.L. (2015) Nanoscale synaptic membrane mimetic allows unbiased high-throughput screen that targets binding sites for Alzheimer’s-associated Ab oligomers. PLoS One 10:e0125263.

    Article  Google Scholar 

  • Wlodawer, A., Segrest, J.P., Chung, B.H., Chiovetti, R., Jr., Weinstein, J.N. (1979) High-density lipoprotein recombinants: evidence for a bicycle tire micelle structure obtained by neutron scattering and electron microscopy. FEBS Lett. 104:231–235.

    Article  Google Scholar 

  • Xu, X.P., Zhai, D., Kim, E., Swift, M., Reed, J.C., Volkmann, N., Hanein, D. (2013) Three-dimensional structure of Bax-mediated pores in membrane bilayers. Cell Death Dis. 4:e683.

    Article  Google Scholar 

  • Yang, J.P., Cirico, T., Katzen, F., Peterson, T.C., Kudlicki, W. (2011) Cell-free synthesis of a functional G protein-coupled receptor complexed with nanometer scale bilayer discs. BMC Biotechnol. 11:57.

    Article  Google Scholar 

  • Yang, S.J., Zhang, S.G. (2006) Self-assembling behavior of designer lipid-like peptides. Supramol. Chem. 18:389–396.

    Article  Google Scholar 

  • Ye, F., Hu, G., Taylor, D., Ratnikov, B., Bobkov, A.A., McLean, M.A., Sligar, S.G., Taylor, K.A., Ginsberg, M.H. (2010) Recreation of the terminal events in physiological integrin activation. J. Cell Biol. 188:157–173.

    Article  Google Scholar 

  • Yeh, J.I., Du, S., Tortajada, A., Paulo, J., Zhang, S. (2005) Peptergents: peptide detergents that improve stability and functionality of a membrane protein, glycerol-3-phosphate dehydrogenase. Biochemistry 44:16912–16919.

    Article  Google Scholar 

  • Yoon, J.Y., Kim, J., An, D.R., Lee, S.J., Kim, H.S., Im, H.N., Yoon, H.J., Kim, J.Y., Kim, S.J., Han, B.W., Suh, S.W. (2013) Structural and functional characterization of HP0377, a thioredoxin-fold protein from Helicobacter pylori. Acta Crystallogr. D 69:735–746.

    Article  Google Scholar 

  • Zhang, M., Huang, R., Ackermann, R., Im, S.-C., Waskell, L., Schwendeman, A., Ramamoorthy, A. (2016) Reconstitution of the Cytb5-CytP450 complex in nanodiscs for structural studies using NMR. Angew. Chem. Int. Ed. Engl. 55:4497–4499.

    Article  Google Scholar 

  • Zhang, P., Ye, F., Bastidas, A.C., Kornev, A.P., Wu, J., Ginsberg, M.H., Taylor, S.S. (2015) An isoform-specific myristylation switch targets Type II PKA holoenzymes to membranes. Structure 23:1563–1572.

    Article  Google Scholar 

  • Zhang, Q., Tao, H., Hong, W.-X. (2011) New amphiphiles for membrane protein structural biology. Methods 55:318–323.

    Article  Google Scholar 

  • Zhang, Z., Chen, J. (2016) Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell 167:1586–1597.

    Article  Google Scholar 

  • Zhao, X., Nagai, Y., Reeves, P.J., Kiley, P., Khorana, H.G., Zhang, S. (2006) Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin. Proc. Natl. Acad. Sci. USA 103:17707–17712.

    Article  ADS  Google Scholar 

  • Zhao, Y., Imura, T., Leman, L.J., Curtiss, L.K., Maryanoff, B.E., Ghadiri, M.R. (2013) Mimicry of high-density lipoprotein: functional peptide-lipid nanoparticles based on multivalent peptide constructs. J. Am. Chem. Soc. 133:13414–13424.

    Article  Google Scholar 

  • Zocher, M., Roos, C., Wegmann, S., Bosshart, P.D., Dötsch, V., Bernhard, F., Müller, D.J. (2012) Single-molecule force spectroscopy from nanodiscs: An assay to quantify folding, stability, and interactions of native membrane proteins. ACS Nano 6:961–971.

    Article  Google Scholar 

  • Zoghbi, M.E., Altenberg, G.A. (2017) Membrane protein reconstitution in nanodiscs for luminescence spectroscopy studies. Nanotech. Rev. 6:33–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popot, JL. (2018). Alternatives to Detergents for Handling Membrane Proteins in Aqueous Solutions. In: Membrane Proteins in Aqueous Solutions. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-73148-3_3

Download citation

Publish with us

Policies and ethics