Skip to main content

Studies on Mitochondria Directed Plastoquinones

  • Chapter
  • First Online:
Mitochondrial Biology and Experimental Therapeutics

Abstract

Mitochondria-targeted cationic plastoquinone derivatives (SkQs, e.g. SkQ1, SkQR1) and their analogs lacking plastoquinol moiety (C12TPP, C12R1) can pass through bilayer phospholipid membrane. Their cationic forms are accumulated in isolated mitochondria or in mitochondria of living cells, driven by membrane potential. These compounds were extensively tested in model lipid membranes, isolated mitochondria and in living human cells in culture. It was found that SkQs are antioxidants that quench reactive oxygen species (ROS) in mitochondria, and mild uncouplers that facilitate transmembrane proton transport by fatty acids. Both properties result in efficient prevention of oxidative stress and protection of mitochondria and cells from damage by ROS, making SkQs a promising drug candidate against pathologies caused by excess mitochondrial ROS generation. Recent discovery of SkQ1 antibacterial activity at concentrations not toxic to human cells opens a perspective for development of new antibiotics. In this chapter, we summarize recent in vitro experiments with mitochondria-targeted plastoquinones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MitoQ:

10-(6′-Ubiquinonyl) decyltriphenylphosphonium

MPC:

membranophilic penetrating cation

MPI:

membranophilic penetrating ion

PQ:

Plastoquinone

ROS:

Reactive oxygen species

SkQ:

Cationic derivative of plastoquinone or methyl plastoquinone

SkQ1:

10-(6′-Plastoquinonyl) decyltriphenylphosphonium

SkQ2M:

10-(6′-Plastoquinonyl) decylmethylcarnitine

SkQ3:

10-(6′-Methylplastoquinonyl) decyltriphenylphosphonium

SkQ4:

10-(6′-Plastoquinonyl) decyltributylammonium

SkQ5:

5-(6′-Plastoquinonyl) amyltriphenylphosphonium

SkQR1:

10(Plastoquinonyl) decylrhodamine 19

TPB:

Tetraphenylborate

TPP:

Tetraphenylphosphonium

Δψ :

Transmembrane electric potential difference

References

  • Antonenko YN, Avetisyan AV, Bakeeva LE, Chernyak BV, Chertkov VA, Domnina LV, Ivanova OY, Izyumov DS, Khailova LS, Klishin SS, Korshunova GA, Lyamzaev KG, Muntyan MS, Nepryakhina OK, Pashkovskaya AA, Pletjushkina OY, Pustovidko AV, Roginsky VA, Rokitskaya TI, Ruuge EK, Saprunova VB, Severina II, Simonyan RA, Skulachev IV, Skulachev MV, Sumbatyan NV, Sviryaeva IV, Tashlitsky VN, Vassiliev JM, Vyssokikh MY, Yaguzhinsky LS, Zamyatnin AA Jr, Skulachev VP (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc) 73:1273–1287

    Article  CAS  Google Scholar 

  • Antonenko YN, Avetisyan AV, Cherepanov DA, Knorre DA, Korshunova GA, Markova OV, Ojovan SM, Perevoshchikova IV, Pustovidko AV, Rokitskaya TI, Severina II, Simonyan RA, Smirnova EA, Sobko AA, Sumbatyan NV, Severin FF, Skulachev VP (2011) Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers. J Biol Chem 286:17831–17840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns RJ, Smith RA, Murphy MP (1995) Synthesis and characterization of thiobutyltriphenylphosphonium bromide, a novel thiol reagent targeted to the mitochondrial matrix. Arch Biochem Biophys 322:60–68

    Article  CAS  PubMed  Google Scholar 

  • Doughan AK, Dikalov SI (2007) Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis. Antioxid Redox Signal 9:1825–1836

    Article  CAS  PubMed  Google Scholar 

  • Feniouk BA, Skulachev VP (2017) Cellular and molecular mechanisms of action of mitochondria-targeted antioxidants. Curr Aging Sci 10:41–48

    Article  CAS  PubMed  Google Scholar 

  • Feniouk BA, Skulachev VP (2018) Studies on mitochondria directed plastoquinones. In: Oliveira PJ (ed) Mitochondrial biology and experimental therapeutics. Springer, New York

    Google Scholar 

  • Fetisova EK, Avetisian AV, Iziumov DS, Korotetskaia MV, Tashlitskii VN, Skulachev VP, Cherniak BV (2010) Multidrug resistance p-glycoprotein inhibits the antiapoptotic action of mitochondria-targeted antioxidant SkQR1. Tsitologiia 52:1031–1040

    CAS  PubMed  Google Scholar 

  • Fetisova EK, Antoschina MM, Cherepanynets VD, Izumov DS, Kireev II, Kireev RI, Lyamzaev KG, Riabchenko NI, Chernyak BV, Skulachev VP (2015) Radioprotective effects of mitochondria-targeted antioxidant SkQR1. Radiat Res 183:64–71

    Article  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Galimov ER, Chernyak BV, Sidorenko AS, Tereshkova AV, Chumakov PM (2014) Prooxidant properties of p66shc are mediated by mitochondria in human cells. PLoS One 9:e86521

    Article  PubMed  PubMed Central  Google Scholar 

  • Galkin II, Pletjushkina OY, Zinovkin RA, Zakharova VV, Birjukov IS, Chernyak BV, Popova EN (2014) Mitochondria-targeted antioxidants prevent TNFalpha-induced endothelial cell damage. Biochemistry (Mosc) 79:124–130

    Article  CAS  Google Scholar 

  • Galkin II, Pletjushkina OY, Zinovkin RA, Zakharova VV, Chernyak BV, Popova EN (2016) Mitochondria-targeted antioxidant SkQR1 reduces TNF-induced endothelial permeability in vitro. Biochemistry (Mosc) 81:1188–1197

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Green DE (1974) The electromechanochemical model for energy coupling in mitochondria. Biochim Biophys Acta 346:27–78

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333:1109–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hundal T, Forsmark-Andree P, Ernster L, Andersson B (1995) Antioxidant activity of reduced plastoquinone in chloroplast thylakoid membranes. Arch Biochem Biophys 324:117–122

    Article  CAS  PubMed  Google Scholar 

  • Izyumov DS, Domnina LV, Nepryakhina OK, Avetisyan AV, Golyshev SA, Ivanova OY, Korotetskaya MV, Lyamzaev KG, Pletjushkina OY, Popova EN, Chernyak BV (2010) Mitochondria as source of reactive oxygen species under oxidative stress. Study with novel mitochondria-targeted antioxidants—the “Skulachev-ion” derivatives. Biochemistry (Mosc) 75:123–129

    Article  CAS  Google Scholar 

  • James AM, Cocheme HM, Smith RA, Murphy MP (2005) Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem 280:21295–21312

    Article  CAS  PubMed  Google Scholar 

  • Jauslin ML, Meier T, Smith RAJ, Murphy MP (2003) Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 17:1972–1974

    Article  CAS  PubMed  Google Scholar 

  • Jezek J, Engstova H, Jezek P (2017) Antioxidant mechanism of mitochondria-targeted plastoquinone SkQ1 is suppressed in aglycemic HepG2 cells dependent on oxidative phosphorylation. Biochim Biophys Acta 1858:750–762

    Article  CAS  PubMed  Google Scholar 

  • Kasahara A, Scorrano L (2014) Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol 24:761–770

    Article  CAS  PubMed  Google Scholar 

  • Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276:4588–4596

    Article  CAS  PubMed  Google Scholar 

  • Kelso GF, Porteous CM, Hughes G, Ledgerwood EC, Gane AM, Smith RAJ, Murphy MP (2002) Prevention of mitochondrial oxidative damage using targeted antioxidants. Ann N Y Acad Sci 959:263–274

    Article  CAS  PubMed  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    Article  CAS  PubMed  Google Scholar 

  • Korshunova GA, Shishkina AV, Skulachev MV (2017) Design, synthesis and some aspects of biological activity of mitochondria-targeted antioxidants. Biochemistry (Mosc) 82(7):760–777

    Article  CAS  Google Scholar 

  • Kruk J, Trebst A (2008) Plastoquinol as a singlet oxygen scavenger in photosystem II. BBA-Bioenergetics 1777:154–162

    Article  CAS  PubMed  Google Scholar 

  • Kruk J, Jemiolarzeminska M, Strzalka K (1997) Plastoquinol and alpha-tocopherol quinol are more active than ubiquinol and alpha-tocopherol in inhibition of lipid peroxidation. Chem Phys Lipids 87:73–80

    Article  CAS  Google Scholar 

  • Li L, Chen YQ, Gibson SB (2013) Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal 25:50–65

    Article  CAS  PubMed  Google Scholar 

  • Lokhmatikov AV, Voskoboynikova NE, Cherepanov DA, Sumbatyan NV, Korshunova GA, Skulachev MV, Steinhoff HJ, Skulachev VP, Mulkidjanian AY (2014) Prevention of peroxidation of cardiolipin liposomes by quinol-based antioxidants. Biochemistry (Mosc) 79:1081–1100

    Article  CAS  Google Scholar 

  • Lopez-Armada MJ, Riveiro-Naveira RR, Vaamonde-Garcia C, Valcarcel-Ares MN (2013) Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13:106–118

    Article  CAS  PubMed  Google Scholar 

  • Lukashev AN, Skulachev MV, Ostapenko V, Savchenko AY, Pavshintsev VV, Skulachev VP (2014) Advances in development of rechargeable mitochondrial antioxidants. Prog Mol Biol Transl Sci 127:251–265

    Article  CAS  PubMed  Google Scholar 

  • Miwa S, Brand MD (2003) Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem Soc Trans 31:1300–1301

    Article  CAS  PubMed  Google Scholar 

  • Mubarakshina MM, Ivanov BN (2010) The production and scavenging of reactive oxygen species in the plastoquinone pool of chloroplast thylakoid membranes. Physiol Plant 140:103–110

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP, Smith RAJ (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656

    Article  CAS  PubMed  Google Scholar 

  • Nazarov PA, Osterman IA, Tokarchuk AV, Karakozova MV, Korshunova GA, Lyamzaev KG, Skulachev MV, Kotova EA, Skulachev VP, Antonenko YN (2017) Mitochondria-targeted antioxidants as highly effective antibiotics. Sci Rep 7:1394

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowicka B, Kruk J (2012) Plastoquinol is more active than alpha-tocopherol in singlet oxygen scavenging during high light stress of Chlamydomonas reinhardtii. BBA-Bioenergetics 1817:389–394

    Article  CAS  PubMed  Google Scholar 

  • O’malley Y, Fink BD, Ross NC, Prisinzano TE, Sivitz WI (2006) Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria. J Biol Chem 281:39766–39775

    Article  PubMed  Google Scholar 

  • Omarova EO, Antonenko YN (2014) Inhibition of oxidative hemolysis in erythrocytes by mitochondria-targeted antioxidants of SkQ series. Biochemistry (Mosc) 79:139–145

    Article  CAS  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    Article  CAS  PubMed  Google Scholar 

  • Paglialunga S, van Bree B, Bosma M, Valdecantos MP, Amengual-Cladera E, Jorgensen JA, van Beurden D, den Hartog GJM, Ouwens DM, Briede JJ, Schrauwen P, Hoeks J (2012) Targeting of mitochondrial reactive oxygen species production does not avert lipid-induced insulin resistance in muscle tissue from mice. Diabetologia 55:2759–2768

    Article  CAS  PubMed  Google Scholar 

  • Pustovidko AV, Rokitskaya TI, Severina II, Simonyan RA, Trendeleva TA, Lyamzaev KG, Antonenko YN, Rogov AG, Zvyagilskaya RA, Skulachev VP, Chernyak BV (2013) Derivatives of the cationic plant alkaloids berberine and palmatine amplify protonophorous activity of fatty acids in model membranes and mitochondria. Mitochondrion 13:520–525

    Article  CAS  PubMed  Google Scholar 

  • Roginsky V, Barsukova T, Loshadkin D, Pliss E (2003) Substituted p-hydroquinones as inhibitors of lipid peroxidation. Chem Phys Lipids 125:49–58

    Article  CAS  PubMed  Google Scholar 

  • Rogov AG, Ovchenkova AP, Goleva TN, Kireev II, Zvyagilskaya RA (2017) New yeast models for studying mitochondrial morphology as affected by oxidative stress and other factors. Anal Biochem. https://doi.org/10.1016/j.ab.2017.04.003

  • Rokitskaya TI, Murphy MP, Skulachev VP, Antonenko YN (2016) Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes. Bioelectrochemistry 111:23–30

    Article  CAS  PubMed  Google Scholar 

  • Saretzki G, Murphy MP, von Zglinicki T (2003) MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell 2:141–143

    Article  CAS  PubMed  Google Scholar 

  • Severin SE, Skulachev VP, Yaguzhinsky LS (1970) Possible role of carnitine in transport of fatty acids through mitochondrial membrane. Biokhimiya 35:1250–1252

    CAS  Google Scholar 

  • Severin FF, Severina II, Antonenko YN, Rokitskaya TI, Cherepanov DA, Mokhova EN, Vyssokikh MY, Pustovidko AV, Markova OV, Yaguzhinsky LS, Korshunova GA, Sumbatyan NV, Skulachev MV, Skulachev VP (2010) Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore. Proc Natl Acad Sci U S A 107:663–668

    Article  CAS  PubMed  Google Scholar 

  • Severina II, Severin FF, Korshunova GA, Sumbatyan NV, Ilyasova TM, Simonyan RA, Rogov AG, Trendeleva TA, Zvyagilskaya RA, Dugina VB, Domnina LV, Fetisova EK, Lyamzaev KG, Vyssokikh MY, Chernyak BV, Skulachev MV, Skulachev VP, Sadovnichii VA (2013) In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives. FEBS Lett 587:2018–2024

    Article  CAS  PubMed  Google Scholar 

  • Shagieva G, Domnina L, Makarevich O, Chernyak B, Skulachev V, Dugina V (2017) Depletion of mitochondrial reactive oxygen species downregulates epithelial-to-mesenchymal transition in cervical cancer cells. Oncotarget 8:4901–4913

    Article  PubMed  Google Scholar 

  • Skulachev VP, Antonenko YN, Cherepanov DA, Chernyak BV, Izyumov DS, Khailova LS, Klishin SS, Korshunova GA, Lyamzaev KG, Pletjushkina OY, Roginsky VA, Rokitskaya TI, Severin FF, Severina II, Simonyan RA, Skulachev MV, Sumbatyan NV, Sukhanova EI, Tashlitsky VN, Trendeleva TA, Vyssokikh MY, Zvyagilskaya RA (2010) Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochim Biophys Acta 1797:878–889

    Article  CAS  PubMed  Google Scholar 

  • Skulachev MV, Antonenko YN, Anisimov VN, Chernyak BV, Cherepanov DA, Chistyakov VA, Egorov MV, Kolosova NG, Korshunova GA, Lyamzaev KG, Plotnikov EY, Roginsky VA, Savchenko AY, Severina II, Severin FF, Shkurat TP, Tashlitsky VN, Shidlovsky KM, Vyssokikh MY, Zamyatnin AA Jr, Zorov DB, Skulachev VP (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. Curr Drug Targets 12:800–826

    Article  CAS  PubMed  Google Scholar 

  • Smith RA, Porteous CM, Coulter CV, Murphy MP (1999) Selective targeting of an antioxidant to mitochondria. Eur J Biochem 263:709–716

    Article  CAS  PubMed  Google Scholar 

  • Vorobjeva N, Prikhodko A, Galkin I, Pletjushkina O, Zinovkin R, Sud’ina G, Chernyak B, Pinegin B (2017) Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro. Eur J Cell Biol 96:254–265

    Article  CAS  PubMed  Google Scholar 

  • Votyakova TV, Reynolds IJ (2001) DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79:266–277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Project No. 14-50-00029 (B.A.F.) and Project No. 14–24-00107 (V.P.S.)).

Conflict of Interest V.P.S. is a board member of Mitotech LLC, a biotech company which owns rights for compounds of SkQ type.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Skulachev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feniouk, B.A., Skulachev, V.P. (2018). Studies on Mitochondria Directed Plastoquinones. In: Oliveira, P. (eds) Mitochondrial Biology and Experimental Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-73344-9_23

Download citation

Publish with us

Policies and ethics